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Applications

Cryogenics is used for:
I propulsion: liquid H2 and O2
I biology: cryogenics for ISS and space shuttle
I cooling electronics, superconducting devices,

superconducting detectors
I telecom
I military
I science

I earth
I metereology
I astrophysics

I focus on applications below 1K
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Operating Temperatures of Detectors

I cryogenics is a technological risk
I need for cryogenics is driven by detectors
I MKID detectors are missing
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Specifity of Space Cryogenics

I launch vibrations impose mechanical constraints
conflicting with minimization of thermal conductance

I a = 20ms−2 to 30ms−2

I f = 100Hz to 200Hz
I liquid-gas interface cannot be localized by gravity
I life time of 2 to 10 years is required
I budget:

mission year power weight cost
W kg Me

Herschel 2009 1500 3300 1100
Planck 2009 1600 1950 700
Athena 2020 6000 6000 850
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Satellite Architecture

Main parts
1. telescope at T < 300K
2. payload with cold focal

plane detectors
3. service module at

T = 300K

Optimization
I power
I weight
I mechanical noise
I electro-magnetical noise
I cost
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Cooling Chain Architecture

I cold finger interface to focal plane detectors
I active part and control unit linked to radiator
I heat load is minimized
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Cooling Methods

I T > 1K
I radiators
I evaporation and sublimation
I mechanical coolers

I T < 1K
I 3He sorption coolers
I open and closed cycle 3He-4He dilution refrigerators
I adiabatic demagnetization refrigerators
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Performance of Engines and Carnot Cycle
TH

Q̇H

Q̇C

Ẇ

A B

CD

TH

TC

SA SB

heat engine cycle ABCD: Ẇ /Q̇H = (TH −TC)/TH < 1

heat pump cycle DCBA: Q̇H/Ẇ = TH/(TH −TC) > 1
refrigerator cycle DCBA: Q̇C/Ẇ = TC/(TH −TC)

I Carnot engines are optimum:
Q̇H
TH

=
Q̇C
TH
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Coefficient Of Performance (COP)

Carnot = maximum possible COP

COP for mechanical coolers
I mass is 100kg to 150kg
I power is 50W to 200W
I minimize vibrations
I cooling power ≈ 1mW at

4K for 100W of input
power
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Radiators – effect of orbit

Q̇black-body = Aσε(T 4
H −T 4

C)

Close to Earth:
Sun 1.4kW/m2

Earth 0.3kW/m2

LEO 160km to 2000km
I 100K
I International Space

Station
I Earth and Sun

observation
satellites

GEO 36000km
I 75K to 90K
I communication

satellites
L2 1500000km

I 30K to 60K
I science missions
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What is L2?
One of the 5 Lagrangian points where the gravitational pull
of two big masses equals the centripetal force for a much
smaller mass.
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V-Groove Radiators Emit to 3K

James Web Space Telescope

8700 M$

The good and the bad:

I reliability
I no input power
I limited cooling power
I satellite architecture

constraint
I orbit and orientation

constraints
I complex ground test
I may have to be unfolded

after launch

I The diameter of the mirror is 7m
I The radiators cool the telescope to < 40K
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Suzaku – 2 to 3 year lifetime mission

XRS instrument
I 32 µcalorimeters with 6

eV resolution from
0.2keV to 10keV at
60mK

I single stage ADR
I 34L superfluid He dewar
I 120L solid Ne dewar
I single stage Stirling

cooler
I radiator to 230K
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Suzaku – size imposes cryogenic constraints
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Suzaku – cooling chain

I 2 to 3 year lifetime
I main shell cooled by

radiation to 230 K
I OVCS cooled to 100K

with a Stirling cooler
I 120L Ne dewar
I 34L He dewar
I Q̇He < 1mW

I phase separator
I load Q̇ADR < 300µW

I ADR
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Suzaku – phase separator – 1

How does it work?
I due to capillarity, liquid

I wets the wall
I fills the porous plug

I fountain effect
I ∆T across the plug

forces liquid into the
cryostat

I reduce heat due to film
far from cryostat
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Suzaku – phase separator – 2

Suzaku progress
I diaphragm reduces film

flow
I cryostat is also cooled by

evaporation of the film
because of the thermal
link

I heat leak of 1mW
instead of 100mW
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Suzaku – ADR

I problems: salt pill
I ferric ammonium

sulfate
I oxidizes easily
I corrodes copper

I solution:
I salt pill has to be

sealed
I T > 300K forbidden
I gold thermal bus
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Suzaku – ADR

I thermal contraction to fix
the ADR in the magnet
for (cold) launch

I good thermal contact in
the stage: 75% efficiency

I magnet current releases
heat to helium

I 2 parallel active gas heat
switches with zeolite
increase reliability

I ˙QADR = 5µW at 60mK
for 24h
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Suzaku – ADR efficiency

I good thermal contact in
the stage: 75% efficiency

I how does this compare to
Carnot?

I ADR can be operated in
Carnot cycle and is
almost optimally efficient

I helium bath evaporated
within 2 weeks due to a
bad vacuum
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Suzaku – end

I helium bath evaporated
within 2 weeks due to a
bad vacuum

I opening the vacuum
valve of the He bath to
improve the thermal
isolation caused
evaporated helium to
leak through it
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Herschel – science

Objectives
I galaxy formation and

evolution in early Universe
I creation of stars and their

interaction with interstellar
medium

I molecular chemistry of early
Universe

Instruments: 55µm to 672µm
HIFI ?

PACS T < 300mK
SPIRE T < 300mK
⇒ 3He sorption cooler



Cryogenic Space
Applications

Gerard Vermeulen

Introduction
Applications
Constraints
Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

CCDR

Herschel – cryogenic chain
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Herschel – 3He Sorption Coolers – 1

1. sorption pump
2. pump tube
3. condenser
4. evaporator
5. cold stage
6. heater
7. thermal link
8. heat switch
9. support structure

10. heat switch
11. diaphragm (4He only)
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Herschel – 3He Sorption Coolers – 2

I Precooling temperature
3He 3K
4He 5K

I Low thermodynamic
efficiency.

Herschel
I 46h hold time with 96 %

duty cycle
I Q̇C = 8µW at

TC = 274mK
I Q̇H = 2.4mW at

TH = 1.8K
I active gas gap switch
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Athena – X rays to study gravitational events.

Key instrument: XMS
I microcalorimeter to detect X-rays
I 2µK at 50mK
I 90 % operating time
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Athena – baseline: NASA ADR + JAXA cryostat
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Athena – cryostat
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Athena – CEA alternative



Cryogenic Space
Applications

Gerard Vermeulen

Introduction
Applications
Constraints
Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

CCDR

Planck – objective

Reveal the initial conditions for the evolution of the universe
by mapping the Cosmic Microwave Background with a
resolution of 20′ and about 1µK from 30GHz to 850GHz
with LFI and HFI instruments.
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Planck – cooling chain
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Planck – architecture
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Planck – H2 Joule-Thompson expansion cooler
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Planck – HFI instrument
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Planck – open cycle dilution refrigerator

Thermal fluctuations (droplets) damped by a
Holmium-Yttrium thermal mass
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Scaling the Planck dilution refrigerator

2009: Planck (CMB)
I temperature: 100mK
I cooling power: 200nW
I lifetime: 2 years

I helium flowrates:
3He 6µmols−1
4He 18µmols−1

I open cycle high pressure
storage on satellite:
3He 12000L stp
4He 36000L stp

2019: SPICA and/or IXO
I temperature: 50mK
I cooling power: 1µW
I lifetime: 5 years

I helium flowrates:
3He 18µmols−1
4He 360µmols−1

I open cycle high pressure
storage on satellite:
3He 90000L stp
4He 1800000L stp

⇒ closed cycle is required!
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Scaling the Planck dilution refrigerator

2009: Planck (CMB)
I temperature: 100mK
I cooling power: 200nW
I lifetime: 2 years
I helium flowrates:

3He 6µmols−1
4He 18µmols−1

I open cycle high pressure
storage on satellite:
3He 12000L stp
4He 36000L stp

2019: SPICA and/or IXO
I temperature: 50mK
I cooling power: 1µW
I lifetime: 5 years
I helium flowrates:

3He 18µmols−1
4He 360µmols−1

I open cycle high pressure
storage on satellite:
3He 90000L stp
4He 1800000L stp

⇒ closed cycle is required!
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Overview closed-cycle dilution refrigerator

3He 4He

HX

T = 100mK

T = 1.5K

T = 1.0K

HX SL

T < 50mK

HXHX

1.7K1.7K

still

Planck: open cycle dilution
refrigerator

I ṅ3 = 6µmols−1

I ṅ4 = 18µmols−1

I JT cooler at mixture exit
I heat load: 10mW at 4.5K

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel
4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K
3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K
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still

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel

4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K
3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K
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Overview closed-cycle dilution refrigerator

3He 4He

HX

T = 100mK

T = 1.5KT = 1.0K

HX SL

T < 50mK

HXHX

1.7K1.7K

still

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel

Still with vapor-liquid phase
separator
not yet working

4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K
3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K
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Overview closed-cycle dilution refrigerator
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HX
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T = 1.5KT = 1.0K

HX SL

T < 50mK

HXHX

1.7K1.7K

still

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel
4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K

3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K



Cryogenic Space
Applications

Gerard Vermeulen

Introduction
Applications
Constraints
Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

CCDR

Overview closed-cycle dilution refrigerator
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T = 1.5KT = 1.0K

HX SL

T < 50mK
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1.7K1.7K

still

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel
4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K
3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K
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Overview closed-cycle dilution refrigerator
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HX

T = 100mK

T = 1.5KT = 1.0K

HX SL

T < 50mK

HXHX

1.7K1.7K

still

Heat exchanger (HX) optimization
3-tube HX ⇒ 2-tube HX and SL in
parallel
4He circulation: fountain pump
ṅ4 ≈ 400µmols−1 with Q̇fp = 3.5mW
at T = 2.1K
3He circulation, pumps under
development
ṅ3 from 20µmols−1 to 60µmols−1 for
pstill from 0.3mbar to 15mbar

Precooling
heat load is about 5mW at T = 1.7K
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Counterflow heat exchanger and mixing chamber

still

extractor

upper part

lower part

2-tube-HX

mixer part

superleak

Q̇mco ≈
detector

Thermal model is guide
I enthalpy ∝ T 2

I heat exchange
∝ T 4

solid −T 4
liquid

I viscous dissipation ∝ 1/T 2

extractor d = 0.2mm,L = 1.0m
upper d = 0.4mm,L = 3.0m
lower d = 0.6mm,L = 3.0m

model: ∆Tmc < 1mK
for d = 0.8mm

superleak 3.0mm×2.6mm
SS316L tube

mixer viscous dissipation
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Mixer part heat lift test setup

Q̇mco

Tqo

Tload

Experiment
Thermometers and heater are
mounted on copper cylinders
soldered to a spiral of CuNi or
Ag tubing
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Viscous heating (tube size): 0.6mm vs 1.0mm

Tliquid for 0.6mm tube
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Tliquid for 1.0mm tube
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Lower temperatures with the 1.0mm tube are due to less
viscous heating. Different colors indicate different pstill.
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Mixer part heat lift (detector) and Kapitza
resistance

Q̇mco

Tqo

Tload

Experiment
Thermometers and heater are
mounted on copper cylinders
soldered to a spiral of CuNi or
Ag tubing

Therefore
I Tqo = Tsolid = T"detector"
I Tload = Tliquid

Kapitza equation

Q̇ =
A

4ρK

(
T 4

solid −T 4
liquid

)

Assumptions
I Kapitza resistance is

dominant
I No temperature gradients

in in the copper
I Heat is transported by

flow only
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Kapitza equation
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flow only
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Mixer part heat lift (detector) and Kapitza
resistance

Q̇mco

Tqo

Tload

Experiment
Thermometers and heater are
mounted on copper cylinders
soldered to a spiral of CuNi or
Ag tubing

Therefore
I Tqo = Tsolid = T"detector"
I Tload = Tliquid

Kapitza equation

Q̇ =
A

4ρK

(
T 4

solid −T 4
liquid

)

Assumptions
I Kapitza resistance is

dominant
I No temperature gradients

in in the copper
I Heat is transported by

flow only
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1.0mm CuNi vs 1.0mm Ag with 50µg sinter

T"detector" for 1.0mm CuNi
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T"detector" for 1.0mm Ag
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More exchange area decreases T"detector". For Ag tube red,
green, blue, and cyan indicate pstill = 0.3, 5, 10, and 15
mbar.
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1.0mm CuNi vs 1.0mm Ag with 50µg sinter

Kapitza for 1.0mm CuNi tube
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Kapitza for 1.0mm Ag tube
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Development of 3He circulators

JAXA Improving the compressor for the 3He
compressor for the JT of SPICA

I Improving the check valves
Cooll/Twente Sorption pump with check valves operating

at 15K
I Check valves are being developed
I Funding is being asked to build a

prototype using Darwin compressor cells
CNRS/ALTAL Holweck compressor (high-pressure stage

turbo pump)
I A setup is being built to test our

modelization of a commercial pump
I A pump will be built using ball bearings

and a commercial motor



Cryogenic Space
Applications

Gerard Vermeulen

Introduction
Applications
Constraints
Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

CCDR

Conclusion: current status

I heat lift mixing chamber is 1µW at Theater = 51.4mK
and Tliquid = 44.0mK ⇒ interface with a real detector?

I 3He circulator specifications: fridge works better at
lower pstill, but 10mbar is still OK:

pstill ṅ3 ṅ4 Tliquid Theater
mbar µmols−1 µmols−1 mK mK
0.3 16.7 398 44.0 51.4
5.0 18.5 349 45.0 51.7
10.0 28.8 346 46.7 52.6

I three different 3He circulators are work in progress
I heat load precooler is 5mW at 1.7K
I the vapor-liquid phase separator in the still is work in

progress
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