Cryogenic Space Applications

Gerard Vermeulen

Cryogenic Space Applications

Gerard Vermeulen

Néel Institute

Cryocourse 2011-09-23

Constraints Architecture Efficiency Radiators Suzaku Herschel ASTRO-H Athena Planck OCDR CCDR

・ロト・西ト・田・・田・・日・ シック

Outline

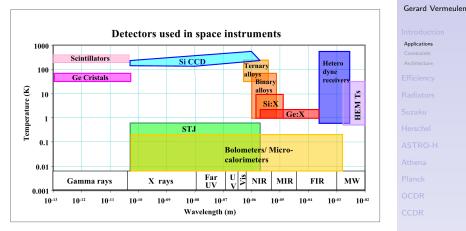
Introduction Applications Constraints Architecture		Gerard Vermeulen Introduction Applications Constraints Architecture Efficiency
Efficiency		
Radiators		Suzaku Herschel
Suzaku		ASTRO-H
Herschel		Athena Planck
ASTRO-H		OCDR
Athena		CCDR
Planck		
OCDR		
CCDR		
	▲□▶▲圖▶▲壹▶▲壹▶ 壹 少へで	

Cryogenic Space Applications

Applications

Cryogenics is used for:

- propulsion: liquid H₂ and O₂
- biology: cryogenics for ISS and space shuttle
- cooling electronics, superconducting devices, superconducting detectors
 - telecom
 - military
 - science
 - earth
 - metereology
 - astrophysics
- focus on applications below 1K


Cryogenic Space Applications

Gerard Vermeulen

Applications
Constraints
Architecture
Herschel
ASTRO-H
Athena
Planck

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Operating Temperatures of Detectors

From B.Collaudin, Estec

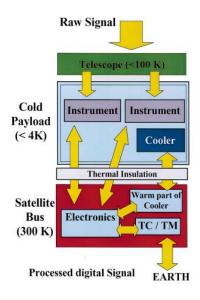
- cryogenics is a technological risk
- need for cryogenics is driven by detectors
- MKID detectors are missing

Cryogenic Space

Applications

Specifity of Space Cryogenics

- launch vibrations impose mechanical constraints conflicting with minimization of thermal conductance
 - $a = 20 \,\mathrm{ms}^{-2}$ to $30 \,\mathrm{ms}^{-2}$
 - ▶ *f* = 100 Hz to 200 Hz
- liquid-gas interface cannot be localized by gravity
- life time of 2 to 10 years is required
- budget:


mission	year	power	weight	cost
		W	kg	M€
Herschel	2009	1500	3300	1100
Planck	2009	1600	1950	700
Athena	2020	6000	6000	850

Cryogenic Space Applications

Gerard Vermeulen

Constraints

Satellite Architecture

Main parts

- 1. telescope at $T < 300 \,\mathrm{K}$
- 2. payload with cold focal plane detectors
- 3. service module at $T = 300 \,\mathrm{K}$

Optimization

- power
- weight
- mechanical noise
- electro-magnetical noise
- cost

Cryogenic Space Applications

Gerard Vermeulen

Architecture

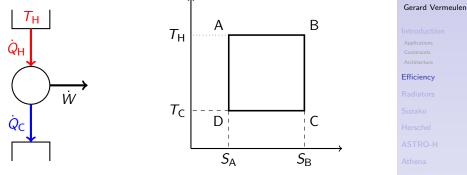
Cooling Chain Architecture

Satellite Structure / Thermal Environment Heat Losses Radiator Architecture Detector Cold Active part finger (Compressor 0. Cooling power Cryogenic Control Space area electronics Cooler T, Electrical Power Q. Warm Solar array / Power subsystem area Heat flow Electrical power Solar radiation Solar radiation

- cold finger interface to focal plane detectors
- active part and control unit linked to radiator
- heat load is minimized

Cryogenic Space

Applications Gerard Vermeulen


Cooling Methods

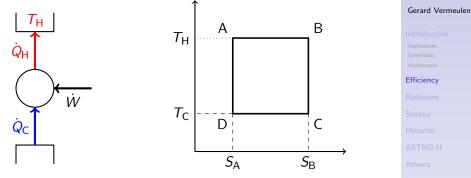
	Applications
	Constraints
	Architecture
<i>T</i> > 1K	
 radiators 	
 evaporation and sublimation 	
 mechanical coolers 	
<i>T</i> < 1K	
I < IN	
 ³He sorption coolers 	Planck
open and closed cycle ³ He- ⁴ He dilution refrigerators	
· · · · ·	
 adiabatic demagnetization refrigerators 	

Cryogenic Space

Applications Gerard Vermeulen

Performance of Engines and Carnot Cycle

heat engine cycle ABCD: $\dot{W}/\dot{Q}_{H} = (T_{H} - T_{C})/T_{H} < 1$

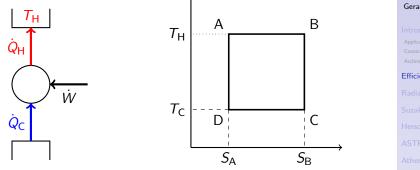

Planck OCDR CCDR

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Cryogenic Space

Applications

Performance of Engines and Carnot Cycle


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Cryogenic Space

Applications

heat pump cycle DCBA: $\dot{Q}_{H}/\dot{W} = T_{H}/(T_{H} - T_{C}) > 1$ refrigerator cycle DCBA: $\dot{Q}_{C}/\dot{W} = T_{C}/(T_{H} - T_{C})$

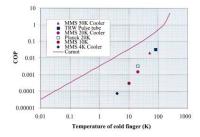
Performance of Engines and Carnot Cycle

heat pump cycle DCBA: $\dot{Q}_{H}/\dot{W} = T_{H}/(T_{H} - T_{C}) > 1$ refrigerator cycle DCBA: $\dot{Q}_{C}/\dot{W} = T_{C}/(T_{H} - T_{C})$

Carnot engines are optimum:

$$\frac{\dot{Q}_{\rm H}}{T_{\rm H}} = \frac{\dot{Q}_{\rm C}}{T_{\rm H}}$$

Cryogenic Space Applications


Gerard Vermeulen

Efficiency

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Coefficient Of Performance (COP)

Carnot = maximum possible COP

COP for mechanical coolers

- mass is 100 kg to 150 kg
- power is 50W to 200W
- minimize vibrations
- cooling power ≈ 1 mW at 4K for 100 W of input power

Cryogenic Space Applications

Gerard Vermeulen

Introduction

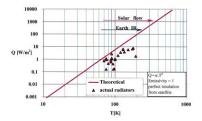
Applications

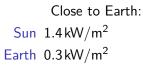
Architecture

Efficiency

Radiators

Suzaku


Ierschel


STRO-F

thena lanck

OCDR

$$\dot{Q}_{\text{black-body}} = A\sigma\epsilon(T_{\text{H}}^4 - T_{\text{C}}^4)$$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architoctur

Efficiency

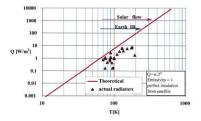
Radiators

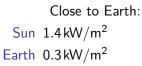
Suzaku

Herschel

ASTRO-H

Athena


Planck


OCDR

CCDR

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\dot{Q}_{\text{black-body}} = A\sigma\epsilon(T_{\text{H}}^4 - T_{\text{C}}^4)$$

LEO 160 km to 2000 km

- ▶ 100 K
- International Space Station
- Earth and Sun observation satellites

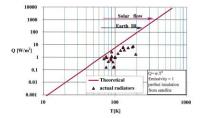
Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Constraints


Efficiency

Radiators

Suzaku Herschel ASTRO-H Athena Planck DCDR CCDR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$\dot{Q}_{\text{black-body}} = A\sigma\epsilon(T_{\text{H}}^4 - T_{\text{C}}^4)$$

 $\label{eq:close to Earth: Close to Earth: Sun 1.4 kW/m^2 \\ \ensuremath{\mathsf{Earth}}\ 0.3 kW/m^2 \\ \ensuremath{\mathsf{W}}\xspace$

LEO 160 km to 2000 km

- ▶ 100 K
- International Space Station
- Earth and Sun observation satellites
- GEO 36000 km
 - ▶ 75K to 90K
 - communication satellites

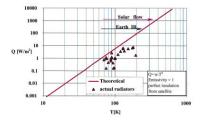
Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Constraints


Efficiency

Radiators

iuzaku Ierschel ASTRO-H Athena Planck DCDR

・ロト・西ト・ヨト・日・ シック

$$\dot{Q}_{\text{black-body}} = A\sigma\epsilon(T_{\text{H}}^4 - T_{\text{C}}^4)$$

 $\label{eq:close to Earth: Close to Earth: Sun 1.4 kW/m^2 \\ \ensuremath{\mathsf{Earth}}\ 0.3 kW/m^2 \\ \ensuremath{\mathsf{W}}\xspace$

LEO 160 km to 2000 km

- ▶ 100 K
- International Space Station
- Earth and Sun observation satellites

GEO 36000 km

- ▶ 75K to 90K
- communication satellites
- L2 1500000 km
 - ▶ 30K to 60K
 - science missions

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture

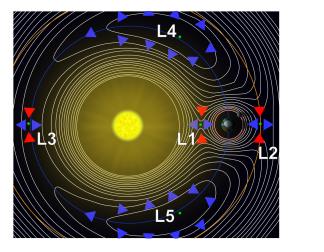
Efficiency

Radiators

uzaku

ASTRO-F

Athena

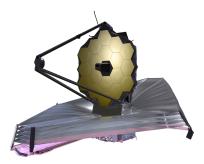

Planck

OCDR

CCDR

What is L2?

One of the 5 Lagrangian points where the gravitational pull of two big masses equals the centripetal force for a much smaller mass.



Cryogenic Space Applications

Gerard Vermeulen

Architecture Efficiency Suzaku Herschel ASTRO-H Athena Planck OCDR CCDR

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Application

Architectur

Efficiency

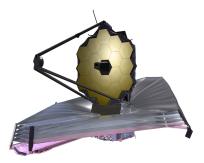
Radiators

Suzaku

Herschel

ASTRO-H

Athena


Planck

OCDR

CCDR

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architectur

Efficiency

Radiators

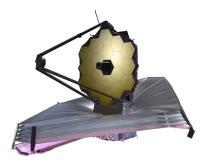
Suzaku

Herschel

ASTRO-F

Athena

Planck


OCDR

CCDR

・ロト・西ト・ヨト・ヨー うらぐ

The good and the bad:

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

ntroduction

Applications

Architecture

Efficiency

Radiators

Suzaku

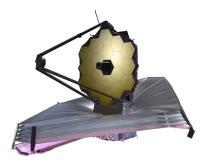
Herschel

ASTRO-H

Athena

Planck

OCDR


CCDR

・ロト・日本・日本・日本・日本・日本

The good and the bad:

no input power

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architectur

Efficiency

Radiators

Suzaku

Herschel

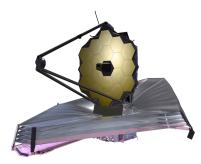
ASTRO-F

Athena

Planck

OCDR

CCDR


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ○ ○ ○

The good and the bad:

no input power

limited cooling power

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

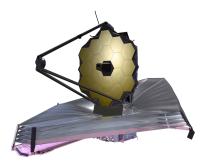
Athena

Planck

OCDR

CCDR

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで


The good and the bad:

no input power

constraint

limited cooling power
 satellite architecture

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architectur

Efficiency

Radiators

uzaku lerschel \STRO-ł

\thena

Planck

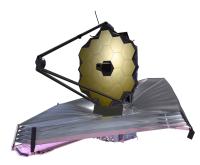
OCDR

CCDR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

The good and the bad:

no input power


constraint

constraints

limited cooling power
 satellite architecture

orbit and orientation

James Web Space Telescope

8700 M\$

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architectur

Efficiency

Radiators

iuzaku Ierschel ASTRO-H Athena Planck

complex ground test

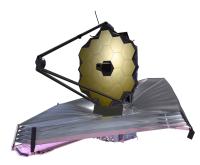
orbit and orientation

The good and the bad:

no input power

constraint

constraints


limited cooling power
 satellite architecture

reliability

CCDR

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

James Web Space Telescope

8700 M\$

The good and the bad:

- reliability
- no input power
- limited cooling power
- satellite architecture constraint
- orbit and orientation constraints
- complex ground test
- may have to be unfolded after launch

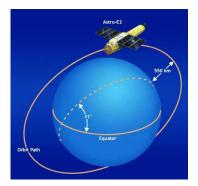
Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture


Efficiency

Radiators

Suzaku Herschel ASTRO-H Athena Planck OCDR CCDR

- The diameter of the mirror is 7 m
- The radiators cool the telescope to $< 40 \, \text{K}$

Suzaku – 2 to 3 year lifetime mission

XRS instrument

- 32 µcalorimeters with 6 eV resolution from 0.2 keV to 10 keV at 60 mK
- single stage ADR
- ► 34 L superfluid He dewar
- 120 L solid Ne dewar
- single stage Stirling cooler
- radiator to 230 K

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

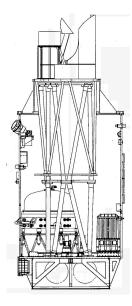
Architecture

Efficiency

Radiators

Suzaku

lerschel

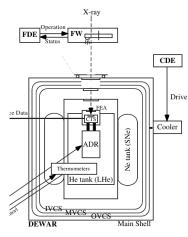

ASTRO-F

thena

Planck

CODR

Suzaku – size imposes cryogenic constraints



Cryogenic Space Applications

Gerard Vermeulen

Suzaku

Suzaku - cooling chain

2 to 3 year lifetime

- main shell cooled by radiation to 230 K
- OVCS cooled to 100K with a Stirling cooler
- 120 L Ne dewar
- 34L He dewar
- ► $\dot{Q}_{He} < 1 \,\mathrm{mW}$
 - phase separator
 - load $\dot{Q}_{ADR} < 300 \,\mu W$

ADR

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture

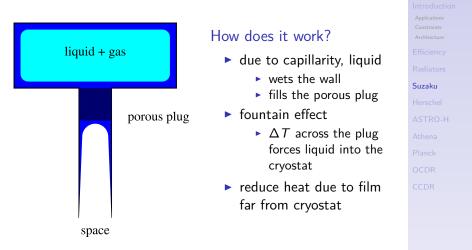
Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

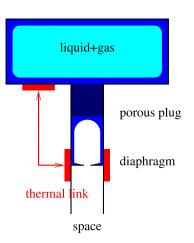

Athena

Planck

OCDR

CCDR

Suzaku – phase separator – 1



・ロト・西ト・ヨト・ヨー うへぐ

Cryogenic Space

Applications Gerard Vermeulen

Suzaku – phase separator – 2

Suzaku progress

- diaphragm reduces film flow
- cryostat is also cooled by evaporation of the film because of the thermal link
- heat leak of 1mW instead of 100mW

Cryogenic Space Applications

Gerard Vermeulen

Suzaku

・ロト・西ト・山田・山田・山口・

Suzaku – ADR

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-F

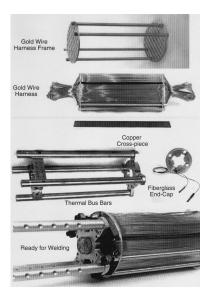
Athena

Planck

OCDR

CCDR

・ロト・西ト・田・・田・・日・ シック


problems: salt pill

sulfateoxidizes easily

ferric ammonium

corrodes copper

Suzaku – ADR

- problems: salt pill
 - ferric ammonium sulfate
 - oxidizes easily
 - corrodes copper
- solution:
 - salt pill has to be sealed
 - T > 300 K forbidden
 - gold thermal bus

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Cryogenic Space Applications

Gerard Vermeulen

Introduction

Applications

Architecture

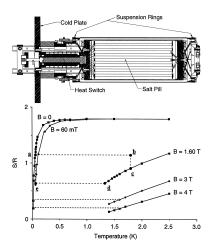
Efficiency

Radiators

Suzaku

Herschel

ASTRO-F


Athena

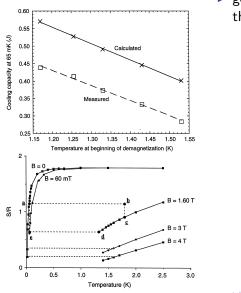
Planck

OCDR

CCDR

Suzaku – ADR

- thermal contraction to fix the ADR in the magnet for (cold) launch
- good thermal contact in the stage: 75% efficiency
- magnet current releases heat to helium
- 2 parallel active gas heat switches with zeolite increase reliability
- $Q_{ADR} = 5 \mu W$ at 60 mK for 24 h


Cryogenic Space Applications

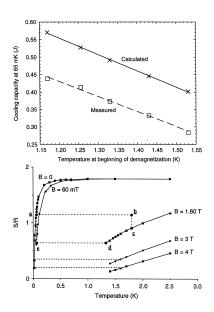
Gerard Vermeulen

Introduction

CODER Constraints Architecture Efficiency Radiators Suzaku Herschel ASTRO-H Athena Planck OCDR CCDR

Suzaku – ADR efficiency

 good thermal contact in the stage: 75% efficiency


Cryogenic Space Applications

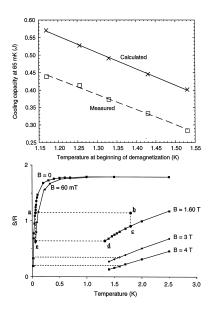
Gerard Vermeulen

Suzaku

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

Suzaku – ADR efficiency

- good thermal contact in the stage: 75% efficiency
- how does this compare to Carnot?


Cryogenic Space Applications

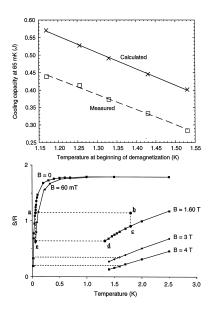
Gerard Vermeulen

Suzaku

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Suzaku – ADR efficiency

- good thermal contact in the stage: 75% efficiency
- how does this compare to Carnot?
- ADR can be operated in Carnot cycle and is almost optimally efficient


Cryogenic Space Applications

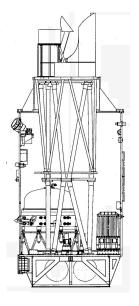
Gerard Vermeulen

Suzaku

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Suzaku – ADR efficiency

- good thermal contact in the stage: 75% efficiency
- how does this compare to Carnot?
- ADR can be operated in Carnot cycle and is almost optimally efficient
- helium bath evaporated within 2 weeks due to a bad vacuum


Cryogenic Space Applications

Gerard Vermeulen

Suzaku

▲□▶▲□▶▲≡▶▲≡▶ = 三 のへの

Suzaku - end

- helium bath evaporated within 2 weeks due to a bad vacuum
- opening the vacuum valve of the He bath to improve the thermal isolation caused evaporated helium to leak through it

Cryogenic Space Applications

Gerard Vermeulen

ntroduction

Applications

Architecture

Efficiency

Radiators

Suzaku

lerschel

thena

CDR

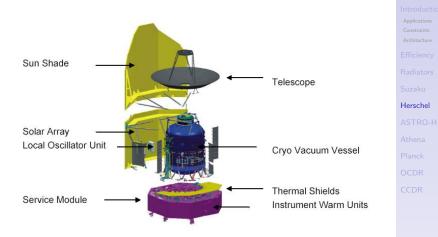
Herschel - science

Objectives

- galaxy formation and evolution in early Universe
- creation of stars and their interaction with interstellar medium
- molecular chemistry of early Universe

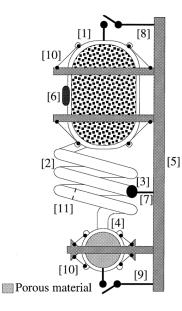
Instruments: 55 µm to 672 µm

HIFI ? PACS T < 300 mKSPIRE T < 300 mK $\Rightarrow {}^{3}\text{He sorption cooler}$ Cryogenic Space Applications


Gerard Vermeulen

Herschel

Herschel - cryogenic chain


Cryogenic Space Applications

Gerard Vermeulen

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Herschel – 3 He Sorption Coolers – 1

1. sorption pump	Application Constraints
2. pump tube	Architectu
3. condenser	
4. evaporator	
	Hersche
5. cold stage	
6. heater	Athena
7. thermal link	Planck
8. heat switch	
0. Heat Switch	CCDR
9. support structure	
10. heat switch	
11. diaphragm (⁴ He only)	
()	

Cryogenic Space Applications Gerard Vermeulen

Herschel – ³He Sorption Coolers – 2

 Precooling temperature ³He 3K ⁴He 5K

 Low thermodynamic efficiency.

Herschel

- 46h hold time with 96 % duty cycle
- $\dot{Q}_{C} = 8 \mu W$ at $T_{C} = 274 \, \mathrm{mK}$
- Q_H = 2.4 mW at T_H = 1.8 K
- active gas gap switch

Cryogenic Space Applications

Gerard Vermeulen

Applications

Architecture

Efficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

Athena – X rays to study gravitational events.

Key instrument: XMS

- microcalorimeter to detect X-rays
- ▶ 2µK at 50mK
- 90 % operating time

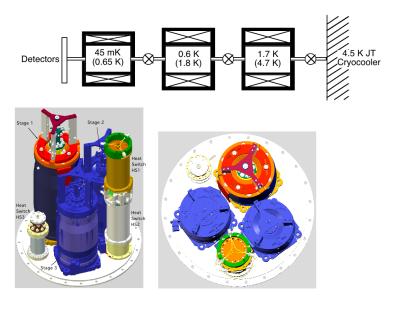
Cryogenic Space Applications

Gerard Vermeulen

ntroduction Applications Constraints Architecture Efficiency Radiators Suzaku Herschel

ASTRO-I

Athena


Planck

OCDR

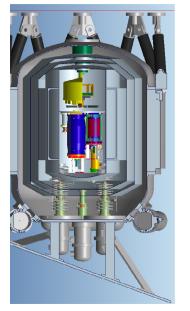
CCDR

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Athena – baseline: NASA ADR + JAXA cryostat

Cryogenic Space Applications

Gerard Vermeulen

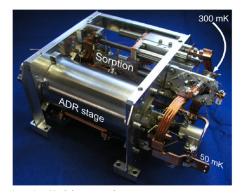

Applications Constraints Architecture Efficiency Radiators Suzaku Herschel ASTRO-H Athena

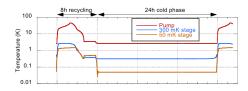
Planck

CCDR

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Athena – cryostat




Cryogenic Space Applications

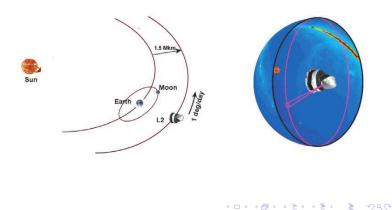
Gerard Vermeulen

Athena

Athena – CEA alternative

Cryogenic Space Applications

Gerard Vermeulen


Athena

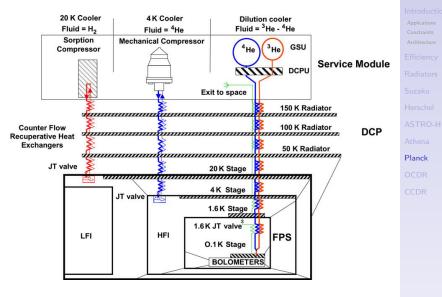
CCDF

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Planck – objective

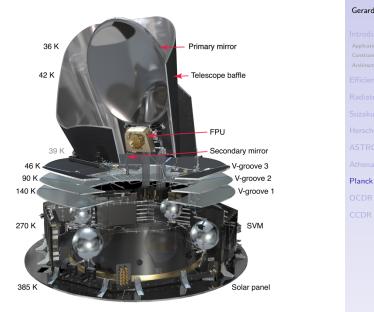
Reveal the initial conditions for the evolution of the universe by mapping the Cosmic Microwave Background with a resolution of 20' and about $1\,\mu K$ from 30 GHz to 850 GHz with LFI and HFI instruments.

Cryogenic Space Applications


Gerard Vermeulen

Applications Constraints Architecture Efficiency Radiators Suzaku Herschel ASTRO-H Athena Planck OCDR

Planck – cooling chain

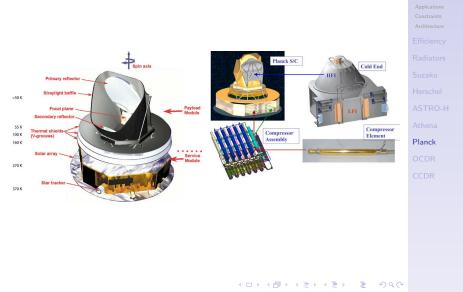

Cryogenic Space Applications

Gerard Vermeulen

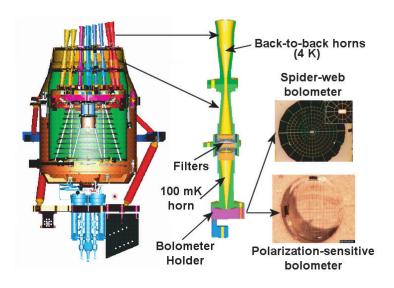
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Planck – architecture

Cryogenic Space Applications


Gerard Vermeulen

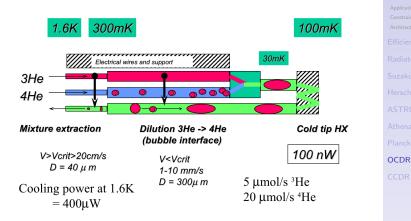
・ロト・日本・日本・日本・日本・日本


Planck – H₂ Joule-Thompson expansion cooler

Cryogenic Space Applications

Gerard Vermeulen

Planck – HFI instrument


Cryogenic Space Applications

Gerard Vermeulen

Planck

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Planck – open cycle dilution refrigerator

Thermal fluctuations (droplets) damped by a Holmium-Yttrium thermal mass

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Cryogenic Space Applications

Gerard Vermeulen

2009: Planck (CMB)

- temperature: 100 mK
- cooling power: 200 nW
- lifetime: 2 years

2019: SPICA and/or IXO

- ► temperature: 50 mK
- cooling power: 1µW

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

lifetime: 5 years

Cryogenic Space Applications

Gerard Vermeulen

pplications onstraints rchitecture ficiency

Radiators

Suzaku

Herschel

ASTRO-H

Athena

Planck

OCDR

2009: Planck (CMB)

- temperature: 100 mK
- cooling power: 200 nW
- lifetime: 2 years
- helium flowrates: ³He 6µmols⁻¹ ⁴He 18µmols⁻¹

2019: SPICA and/or IXO

- ▶ temperature: 50 mK
- cooling power: 1µW
- lifetime: 5 years
- helium flowrates: ³He 18µmols⁻¹ ⁴He 360µmols⁻¹

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Cryogenic Space Applications

Gerard Vermeulen

2009: Planck (CMB)

- temperature: 100 mK
- cooling power: 200 nW
- lifetime: 2 years
- helium flowrates: ³He 6µmols⁻¹ ⁴He 18µmols⁻¹
- open cycle high pressure storage on satellite:
 ³He 12000L stp
 ⁴He 26000L stp
 - ⁴He 36000L stp

2019: SPICA and/or IXO

- temperature: 50 mK
- cooling power: 1µW
- lifetime: 5 years
- helium flowrates: ³He 18µmols⁻¹ ⁴He 360µmols⁻¹
- open cycle high pressure storage on satellite:
 ³He 90000L stp
 - ⁴He 1800000L stp

Cryogenic Space Applications

Gerard Vermeulen

2009: Planck (CMB)

- temperature: 100 mK
- cooling power: 200 nW
- lifetime: 2 years
- helium flowrates: ³He 6µmols⁻¹ ⁴He 18µmols⁻¹
- open cycle high pressure storage on satellite:
 ³He 12000L stp
 ⁴He 36000L stp

2019: SPICA and/or IXO

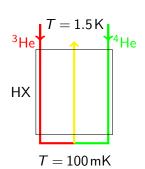
- ▶ temperature: 50 mK
- cooling power: 1µW
- lifetime: 5 years
- helium flowrates: ³He 18µmols⁻¹ ⁴He 360µmols⁻¹
- open cycle high pressure storage on satellite:
 ³He 90000L stp
 ⁴He 1800000L stp

Cryogenic Space Applications

Gerard Vermeulen

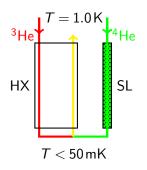
CCDR

\Rightarrow closed cycle is required!


Planck: open cycle dilution refrigerator

- $\dot{n}_3 = 6 \, \mu \text{mol s}^{-1}$
- $\dot{n}_4 = 18 \,\mu \text{mol}\,\text{s}^{-1}$
- JT cooler at mixture exit
- ▶ heat load: 10 mW at 4.5 K

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・



Gerard Vermeulen

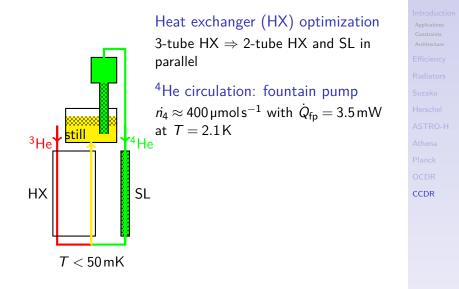
Heat exchanger (HX) optimization 3-tube HX \Rightarrow 2-tube HX and SL in parallel

イロト 不得 トイヨト イヨト 二日 -

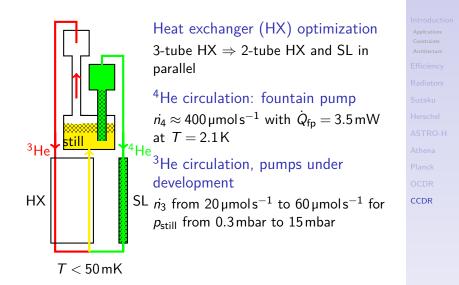
Cryogenic Space Applications

Gerard Vermeulen

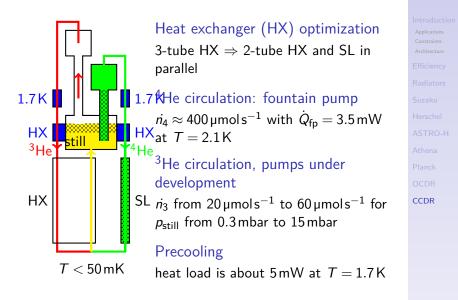
Heat exchanger (HX) optimization 3-tube HX \Rightarrow 2-tube HX and SL in parallel


・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Still with vapor-liquid phase separator


Cryogenic Space Applications

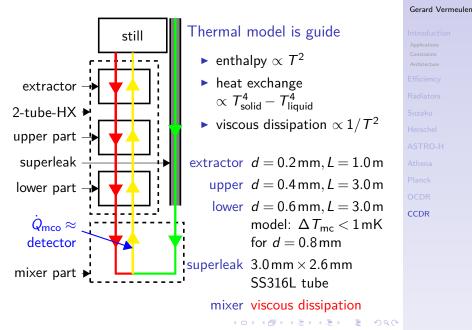
Gerard Vermeulen


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Cryogenic Space

・ロト・西ト・山田・山田・山口・

Cryogenic Space


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

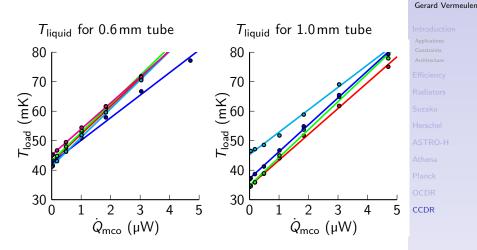
Cryogenic Space

Counterflow heat exchanger and mixing chamber

Cryogenic Space

Applications

Mixer part heat lift test setup

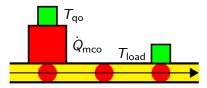

T_{qo} \dot{Q}_{mco} T_{load}

Experiment

Thermometers and heater are mounted on copper cylinders soldered to a spiral of CuNi or Ag tubing Cryogenic Space Applications

Gerard Vermeulen

Viscous heating (tube size): 0.6 mm vs 1.0 mm

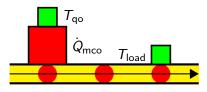


Lower temperatures with the 1.0 mm tube are due to less viscous heating. Different colors indicate different p_{still} .

Cryogenic Space

Applications

Mixer part heat lift (detector) and Kapitza resistance



Experiment

Thermometers and heater are mounted on copper cylinders soldered to a spiral of CuNi or Ag tubing Cryogenic Space Applications

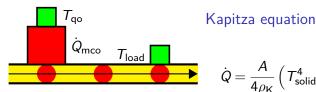
Gerard Vermeulen

Mixer part heat lift (detector) and Kapitza resistance

Experiment

Thermometers and heater are mounted on copper cylinders soldered to a spiral of CuNi or Ag tubing

Kapitza equation


$$\dot{Q} = rac{A}{4
ho_{\mathsf{K}}} \left(\mathcal{T}_{\mathsf{solid}}^{\mathsf{4}} - \mathcal{T}_{\mathsf{liquid}}^{\mathsf{4}}
ight)$$

- Kapitza resistance is dominant
- No temperature gradients in in the copper
- Heat is transported by flow only

Cryogenic Space Applications

Gerard Vermeulen

Mixer part heat lift (detector) and Kapitza resistance

Experiment

Thermometers and heater are mounted on copper cylinders soldered to a spiral of CuNi or Ag tubing

Therefore

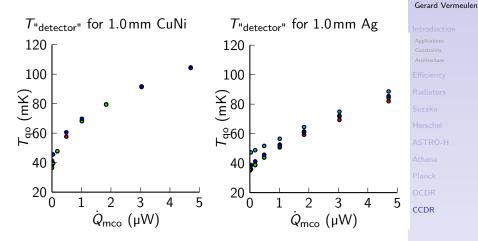
- $T_{qo} = T_{solid} = T_{"detector"}$
- \blacktriangleright $T_{\text{load}} = T_{\text{liquid}}$

Assumptions

 Kapitza resistance is dominant

 $\dot{Q} = \frac{A}{4\rho\kappa} \left(T_{\text{solid}}^4 - T_{\text{liquid}}^4 \right)$

- No temperature gradients in in the copper
- Heat is transported by flow only

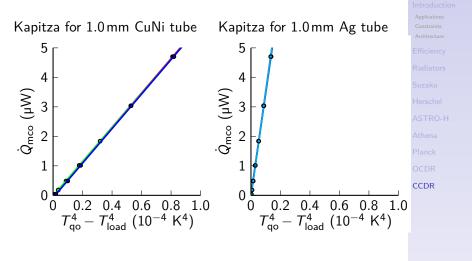

Cryogenic Space Applications

Gerard Vermeulen

CCDR

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

1.0mm CuNi vs 1.0mm Ag with 50µg sinter


More exchange area decreases $T_{"detector"}$. For Ag tube red, green, blue, and cyan indicate $p_{still} = 0.3$, 5, 10, and 15 mbar.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ○ ○ ○

Cryogenic Space

Applications

1.0mm CuNi vs 1.0mm Ag with 50µg sinter

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Cryogenic Space

Development of ³He circulators

JAXA Improving the compressor for the ³He compressor for the JT of SPICA

Improving the check valves

- Check valves are being developed
- Funding is being asked to build a prototype using Darwin compressor cells

CNRS/ALTAL Holweck compressor (high-pressure stage turbo pump)

- A setup is being built to test our modelization of a commercial pump
- A pump will be built using ball bearings and a commercial motor

Cryogenic Space Applications

Gerard Vermeulen

Conclusion: current status

- ▶ heat lift mixing chamber is 1µW at T_{heater} = 51.4 mK and T_{liquid} = 44.0 mK ⇒ interface with a real detector?
- ³He circulator specifications: fridge works better at lower p_{still}, but 10 mbar is still OK:

$p_{\rm still}$	'n ₃	'n4	T_{liquid}	T_{heater}
mbar	$\mu mol s^{-1}$	$\mu mol s^{-1}$	mК	mK
0.3	16.7	398	44.0	51.4
5.0	18.5	349	45.0	51.7
10.0	28.8	346	46.7	52.6

three different ³He circulators are work in progress

- heat load precooler is 5 mW at 1.7 K
- the vapor-liquid phase separator in the still is work in progress

Cryogenic Space Applications

Gerard Vermeulen