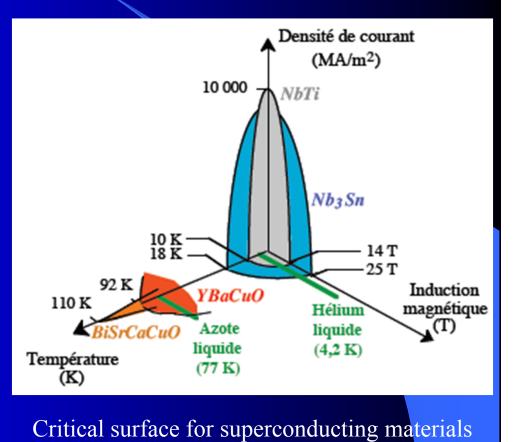


Superconducting Magnets theory and design

Guillaume Donnier-Valentin

Cryocourse September 2011



Superconducting wire Critical parameters

Critical temperature
Critical magnetic field
Critical current density

Cryocourse September 2011

Different type of superconducting wire

LTC superconducting wire NbTI Nb₃Sn, Nb₃Al

MTC superconducting wire MgB₂

HTC superconducting wire
 Bismuth tape
 YBCO tape

Cryocourse September 2011

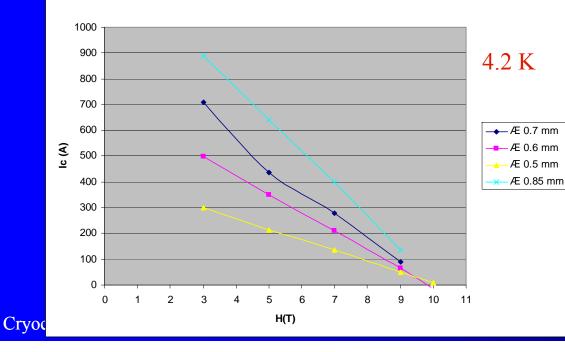
VEEL LTC superconducting wire

 NbTi conductors (many fine filaments of a niobium-titanium (NbTi) alloy embedded in a copper matrix)

- The most commonly used (developed since the sixties)
 - High performance
 - Tc(0T) = 9,5K; Tc(11T) = 4,1K
 - Feasible industrially (Supercon, ASC..) 2000 t/year
 - Easy to provide
 - *Competitive cost (around 300 \$/km depend on wire diameter or 100 \$/kg or 1 €/kA/m)*
 - Guaranteed critical characteristic
 - Easy to handle and no special precautions for use (like copper wire)
 - Lot of choice (size, resistive matrix, copper proportion, multi or mono filamentary...)
 - Isotropic properties
- Operate at 4 K or lower temperature
 - Helium cryogenic
 - High refrigeration cost 1W/700W
 www.neel.cnrs.fr

Cryocourse September 2011

56S53 $\emptyset = 0.5 \text{ mm}$ $_{c} = 500 \text{ A}$ $J_{e} = 2500 \text{ A/mm}^{2}$ (4.2 K; 0 T)



EEL LTC superconducting wire

	No. of Filaments	Cu to SC Ratio	Diameter (mm)		Critical Currents (Amps @ 4.2K) at fields (Tesla,T)				Filament Diameter (µm)
			Bare	Insulated	3T	5T	7T	9T	Diamotor (µm)
56853	56	00.9:1	0.30 0.40 0.50 0.60 0.70 0.85	0.330 0.430 0.540 0.643 0.753 0.896	125 270 470 620 850	100 190 330 440 600 790	55 120 205 270 370 490	20 45 70 100 135 175	30 39 48 58 68 83
54S43	54	1.3	0.30 0.40 0.50 0.60 0.70 0.85 0.95 1.04 1.25	0.330 0.430 0.540 0.643 0.753 0.896 1.000 1.094 1.300	100 215 300 500 710 890	80 150 215 350 435 640 780 880	45 90 135 210 280 400 480 550 750	16 30 50 65 90 135 165 200 240	25 35 45 55 60 75 85 90 110
54S33	54	2.0	0.40 0.50 0.60 0.70 0.85 0.95 1.04	0.430 0.540 0.643 0.753 0.896 1.000 1.094	150 240 360 500 730	110 170 240 350 500 610 700	70 105 160 210 300 360 400	23 32 50 70 100 120 155	31 38 46 54 65 73 80

54S43 NbTi Wire

For our NbTi Coil

 We used 54S43 multifilament wires from supercon company

 Good stability (1/3 of copper) and good performances

 Coil design limited under 9.5 T at 4.2 K

LTC superconducting wire

- In superfluid helium at 1.8 K we can reach up to 12 T
- BUT
 - When operated at reduced temperatures and higher fields, the energy in the magnet can be increased by 50% or more.

 Consequently, the magnet might be irreparably damaged if a quench occurs and if the magnet is not sufficiently protected

Multifilamentary, Niobium-Tin (Nb3Sn) conductors

• Characteristics

 Are used when the field on the conductor is in excess of about 9 Tesla (90 kilogauss)

Better critical characteristics than NbTi

 $(Tc (0T) = 18,3 \text{ K}; Tc (11T) = 10,4 \text{ K}; Jc=10^{6} \text{ A/cm}^{2})$

Allow to reach higher field (up to 18 T)

Used for fusion application (ITER) (fields of 13 T are needed)

LTC superconducting wire

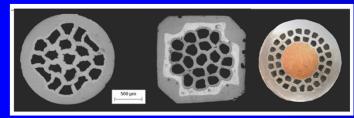
Multifilamentary, Niobium-Tin (Nb3Sn) conductors

- Difficult to wind
- The coil must be realized before the heat treatment of the wire (lead to impregnation problem)
- Very brittle after the heat treatment
- expensive \$2000/kg ; 10 €/kA/m ; only 20 t/year produced
- Cost more than NbTi magnets.
- Like for NbTi magnets, some improvement in performance can also be achieved by reducing the temperature of Nb3Sn magnets, but the increase in field is not as significant as it is in NbTi magnets

■ Nb₃Al

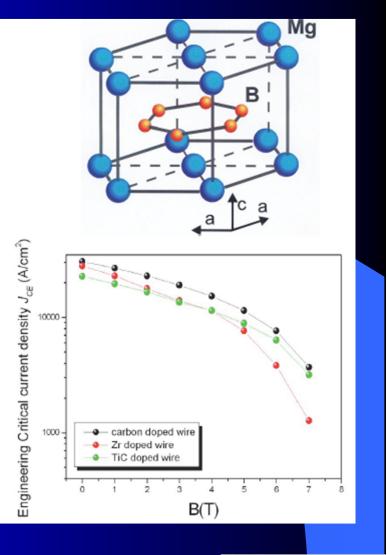
- Better mechanical properties in comparison with Nb₃Sn
- ◆ Industrial development much less advance than for Nb₃Sn

Cryocourse September 2011



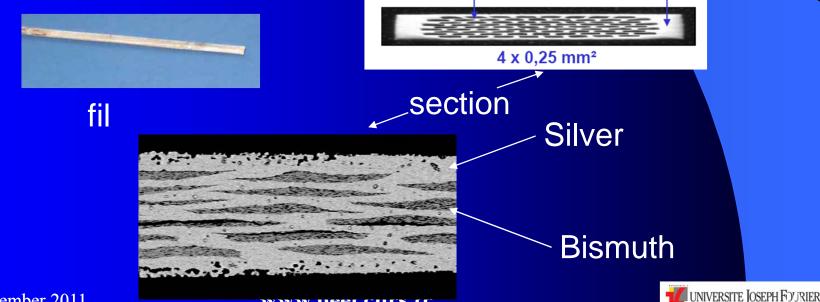
MTC superconducting wire

\blacksquare MgB₂


- Tc (0T) = 39K
- $J_E = 3*10^4 \text{ A/cm}^2$
- Fabrication process : Powder in tube (PIT)
- Long length available (several km) in Nb+Cu or Fe+Cu matrix
- Marketable, development in progress:
- Cost ≈ 100 €/kA/m

Different type of MgB2 wire Diameter 1-2 mm (Columbus Superconductors SpA)

Cryocourse September 2011



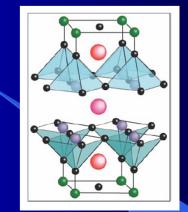
HTC superconducting wire

Critical temperature around 100K
 Liquid nitrogen 77K or cryocooler

Bismuth PIT tape (powder in tube)

fil Bismuth PIT

HTS filaments


Cryocourse September 2011

ww.meei.cm/5.i

MELLING HTC superconducting wire

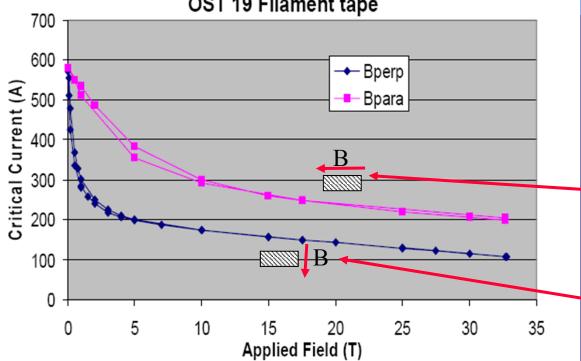
Bismuth PIT wire

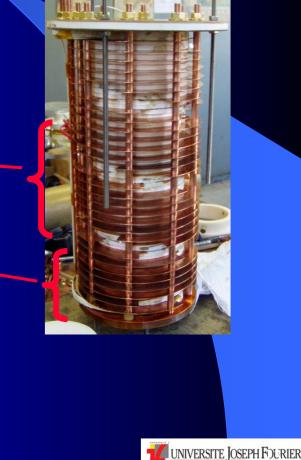
- High anisotropy
- Available in kilometric length
- \bullet Tc = 110K (Bi₂₂₂₃); Jc=5.10⁴ A/cm² (77K);
- Very brittle wire
 - Minimum bend radius
 - Problem with successive thermal cycling (ice in porosity which damage the wire during the following cooling)
- ◆ Expensive (due to silver matrix 5€/m) Bi₂₂₂₃ ≈100 €/kA/m

VEL HTC superconducting wire

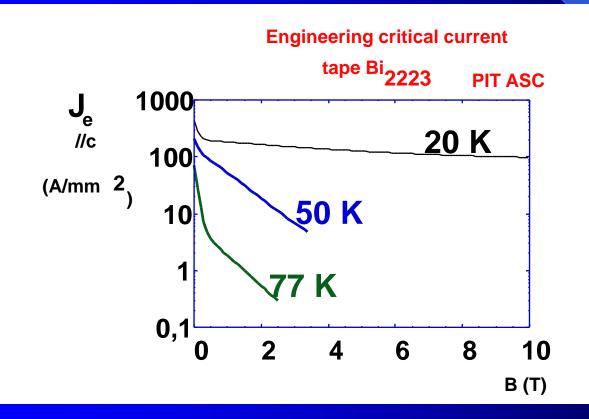
Bismuth PIT wire

- Difficult to make solenoid coil due to rectangular cross section (critical current decreases rapidly when we applied a bend along the radial direction)
 - Pancake coil




 Low mechanical properties (alloys silver Mg for matrix or used of stainless steel tape in parallel to reinforced the structure)

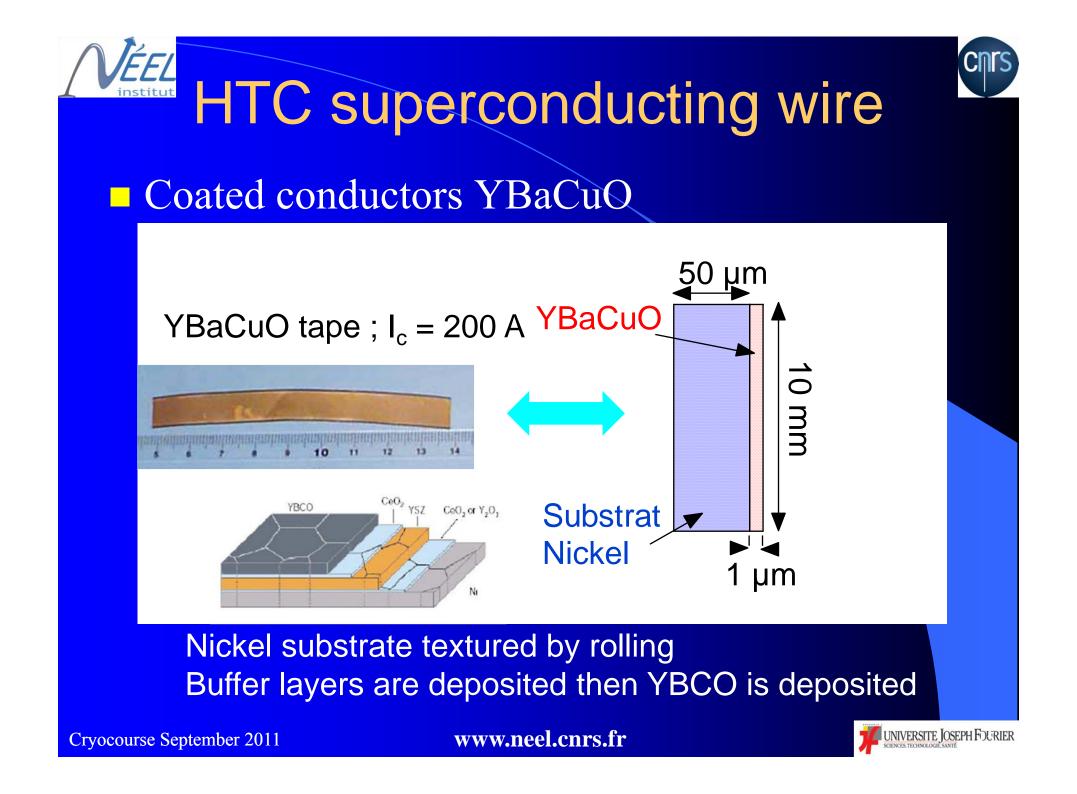
Cryogenic cost less important than for superconducting LTC coil


In comparison with LTC superconductors this tape have always a critical current at high field. It can be used to do insert inside high field coil

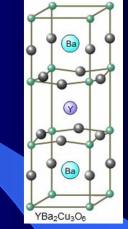

Cryocourse September 2011

HTC superconducting wire

Bismuth PIT wire

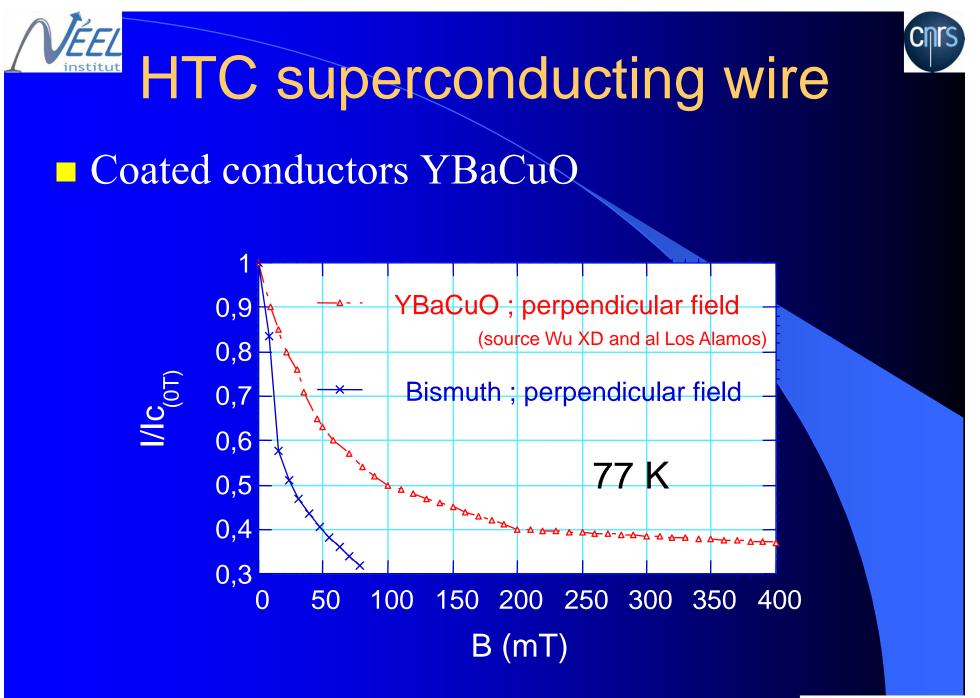

 Critical current is very sensitive to the magnetic field at high temperature, at low temperature it is much better

Cryocourse September 2011

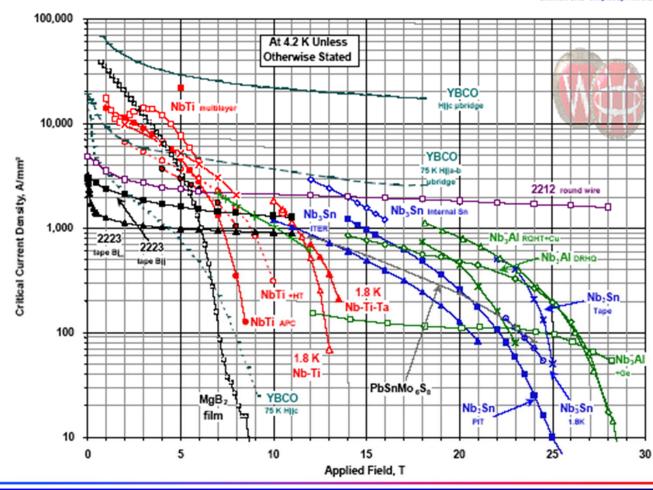

HTC superconducting wire

Coated conductors YBaCuO

- High anisotropy
- High Tc and critical current density Tc=92K; Jc=5.10⁴ A/cm² (77K) ; Jc=2.10⁶ A/cm² (4.2K)
- Difficult to do (epitaxial growth of YBCO layers)
- For the moment, no real industrial process to do it in long length (100m) with constant critical properties


MOCVD, PLD,

- No economical blocking (no silver like for PIT tape)
- Interesting but expensive for the moment
 ≥ 200 €/kA/m



VEEL Comparison LTC and HTC

Advancing Critical Currents in Superconductors

University of Wisconsin-Madison Applied Superconductivity Center December 2002 - Compiled by Peter J. Les

Cost today:

NbTi : 1 €/kA/m ; Nb3Sn : 10€/kA/m MgB2 : 100€/kA/m Bisco : 200€/kA/m

YBCO : 300€/kA/m

Cryocourse September 2011

Interest to do a

superconducting magnet

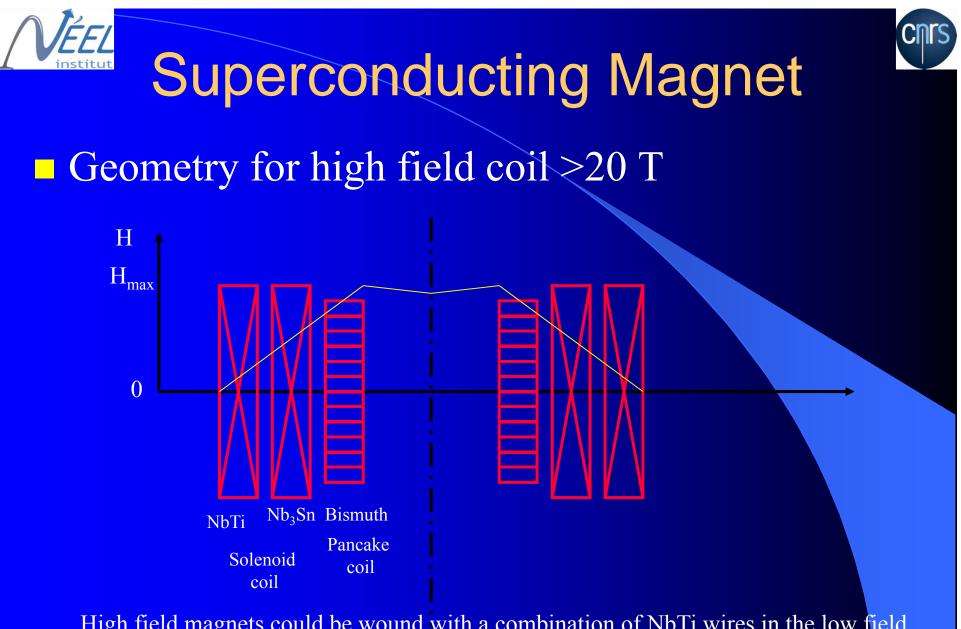
Compared to copper coil

- Generate intense magnetic fields with low electrical power input
- Current densities are high :
 - superconducting magnet systems are quite compact, more light and occupy only a small amount of laboratory space
- very high field stability (superconducting switch)
- No losses in DC application, low electrical power consumption

NEL Superconducting magnet

Small superconducting magnets

- are frequently used :
 - to reach field intensities, stabilities or field shape that are not reachable with alternative magnets
 - cost less than conventional magnets offering comparable or inferior *performance*.


In large magnets

• cost in favor of superconducting magnets (based on the relative costs of power for operating the magnets).

• The cost becomes more favorable for superconducting magnets as the period of operation increases.

- For magnetic field intensities of 1 Tesla or less, without demanding stability requirements :
 - Frequently better generated with water cooled copper coils with or without iron.

High field magnets could be wound with a combination of NbTi wires in the low field region followed with Nb3Sn wound in medium field region and using Bi2212 windings in the high field region.

Cryocourse September 2011

User's specifications

 Magnetic field configuration (maximum field, field shape, compensated zone, stray field)

 Environmental constraints (geometrical, hole field size, weight, material used for mandrel, flange)

Operating mode (DC or AC or Pulsed, long term stability
 Superconducting switch)

First design approach

• Determine the winding configuration

Ampere-turns needed to produce the field

- The stored energy
- The peak field in the conductor region
- An estimate of the magnetic forces and the needed mechanical structure
- The dependence of these parameters on the average current density in the winding

First design approach

- Cooling mode
 - Pool boiling
 - very efficient, \rightarrow direct contact with helium, we must used superfluid helium at 1.8 K
 - but we need a solid and lick-tight helium vessel
 - Forced flow internal cooling
 - very efficient, cooling directly inside the conductor
 - no helium vessel but difficult with internal joint
 - ♦ Indirect cooling
 - heat conduction through a compact winding from a restricted cooling loop or cryocooler
 - *simplest scheme but sensibly lower efficiency*
 - use for magnet operating in steady state regime

Cryocourse September 2011

First design approach

Stability

 Ability of a superconducting magnet to operate without accidental transition to the normal state under thermal disturbance

- Stability margin
 - Cooling method
 - Conductor characteristics

UNIVERSITE JOSEPH FOURIER

First design approach

- Stability
 - Example : impregnated superconducting solenoid ; He pool boiling
 - Maximum field on conductor : 9T
 - Nominal current : 90 A

×	No.of Flaments	C∎to SCRatto	Diameter (mm)		Critical Currents (Amps @42K) at fields (Tesla,T)				Filament
			6 are	ins clated	зт	চা	7 T	9Т	Diamieter (µm)
56353	56	00.9:1	0.30 0.40 0.50 0.60 0.10 0.65	0.330 0.130 0.5 10 0.6 13 0.7 53 0.896	125 21 0 11 0 620 650	100 190 330 440 600 190	55 123 205 210 310 499	20 15 10 135 135	30 39 18 59 68 63
54843	54	1.3	0.30 0.40 0.50 0.60 0.70 0.95 1.04 1.25	0.330 0.430 0.540 0.643 0.753 0.550 1.000 1.094 1.300	100 215 300 500 710 090	80 150 215 350 435 640 780 880	45 90 135 210 280 480 550 750	16 30 50 65 100 100 200 240	25 38 45 58 70 80 90 110
5 1533	51	2.0	0.40 0.50 0.60 0.10 0.65 0.95 1.04	0.130 0.5 40 0.6 43 0.7 53 0.896 1.000 1.094	150 240 360 500 130	110 170 240 350 500 610 100	10 105 160 210 360 460	3 3 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	31 38 55 54 85 13 80

Cryocourse September 2011

- First design approach
 - Quench protection
 - Resistance or diode in parallel on the output of the coil
 Quench detector for certain coil with high energy
 Shut down the power supply in case of quench

In steady state there is no voltage across the coil
 But

during the quench → fast dump of current

high voltage can be created and can damage the magnet

Special requirement for cryogenic insulation

Related to electrical, thermal and mechanical properties

♦ We mainly used

• Fiber glass, glass-epoxy composite (G10 G11), Kapton (polyimide film), araldite for impregnation, Mylar (polyester films, "polyethylene terephthalate"), teflon ("Polytetrafluoroethylene (PTFE)"), nylon

Cryocourse September 2011

Electrical insulation

- For Nb3Sn magnet, there is another difficulty :
 - Thermal cycle at high temperature (660- 700 °C) required to synthesize the superconducting phase
 - Polymer insulation cannot be used before the thermal cycle
 - Usually fiberglass spacers are used during thermal cycle → this step is followed by a impregnation under vacuum
 - Nb₃Sn superconducting phase and fiberglass are very brittle after the heat treatment
 impregnation process needs special care

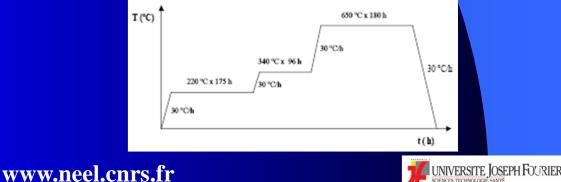


Table : Electrical and thermal properties for insulating materials (p 347 handbooks of cryogenic engineering)

Insulating materials	Thermal conductivity at 4.2 K (W/m · K)	C _p at 4.2 K (J/kg⋅K)	Integrated thermal contraction from 293 to 4.2 K (%)	Breakdown voltage DC condition (kV/mm)
Liquid helium Gas helium	0.028 0.008	4500 7300	-	30 at 4.2 K 15 at 4.4 K 0.5 at 77 K 0.2 to 0.3 at RT
Glass-epoxy composite	0.07 ± 0.02	0.4 to 2	0.16 to 0.38 depending on fiber orientation	0.2 to 0.5 at RI
• Unidirectional parallel to fiber transverse to fiber	0.13 ± 0.05		0.1 to 0.55 0.26 to 0.8	
 Woven 48% fiber longitudinal through thickness Glass fiber Glass 	0.07 ± 0.02 0.06 to 0.075 0.12 ± 0.02 0.1		depending on fiber volumic fraction	
Phenolic resin (varnish) Polyimide film Epoxy resin	0.6 0.045 0.04 to 1.1	3.2 17 1.4 ± 0.6	0.9 0.4 ± 0.1 1.15 ± 0.06 rigid 1.1 flexible 1.5	118 at 300 K 301 at 4.2 K
Polyethyleneterephtalate Polytetrafluoroethylene Polyethylene	0.008 0.043 ± 0.003 0.012	0.96 2.96 0.8 crystalline 2 amorphous	0.42 2.1 ± 0.6 1.5	543 at 4.2 K 33 at 4.2 K 360 at 4.2 K
Nylon Copper used in superconductor	0.012	0.09	1.5 0.29	

Cryocourse September 2011

Impregnated NbTi superconducting solenoid

Superconducting solenoid construction

- Theoretical design
- Mechanical part design, machining
- Winding and impregnation
- Protection
- Superconducting switch
- Magneto forming contact
- Cryogenic tests, training, field card

8 T coil with 0 field zone

Impregnated NbTi superconducting solenoid

- Theoretical design
 - First approach
 - Choose the most appropriated wire to do the coil (wire diameter, critical current)
 - *Maximum current define by the user (power supply, experimental set up)*
 - Maximum field and size of the hole field
 - Estimation of number of turns to reach the user's specification
 - Max field, volume, compensated zone, field shape, field homogeneity at the maximum,
 - first estimation

Calculation of magnetic induction in the center of a solenoid with constant field density

$$B = \frac{\mu_0 NI}{H}$$

N : nb of turns, I current , H solenoid length

 $h = \frac{1}{2} \text{ length (cm)}$ J = current density in thesuperconducting wire (A/cm²) $\alpha = \text{external radius / inner radius}$ $\beta = \text{half length / inner radius}$ $\lambda = \text{packing factor}$

$$B = 0.4.\pi.h.J.\lambda.\ln\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}} \quad Gauss - cm - A$$

UNIVERSITE JOSEPH FOURIER

Cryocourse September 2011

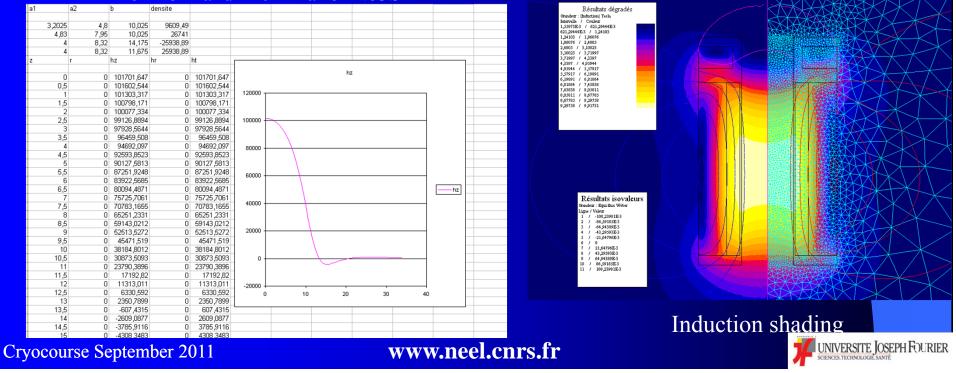
Impregnated NbTi superconducting solenoid

Estimation of energy

$$W = \frac{1}{2} L I^2$$

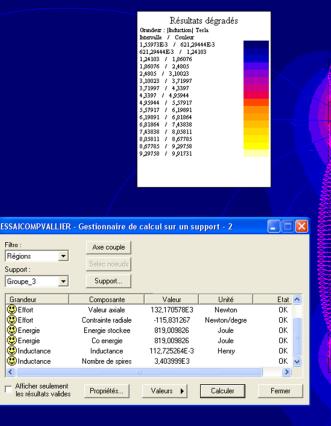
With L(µH)=2.2*N^2*D^2/(2.2*H+D)
 Solenoid length H(m) diameter D(m), avec N nb of turns

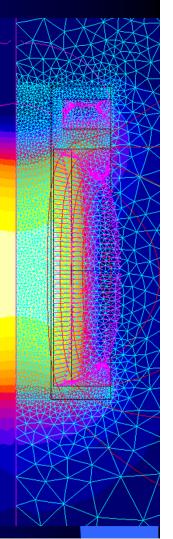
 For a solenoid having H/D>.2, with a degree of accuracy of 3%.



more accurate work :

- Thanks to a finite element software Flux2D, 3D (computation electromagnetic software) or FORTRAN programs
 - We can calculate precisely the magnetic field in all place of the space (axial, radial and total magnetic field)
 - Calculate inductance , energy
 - Calculate Lorentz force distribution in the winding for stress analysis σmax ≈ 270 MPa for NbTi and 240 MPa for Nb3Sn



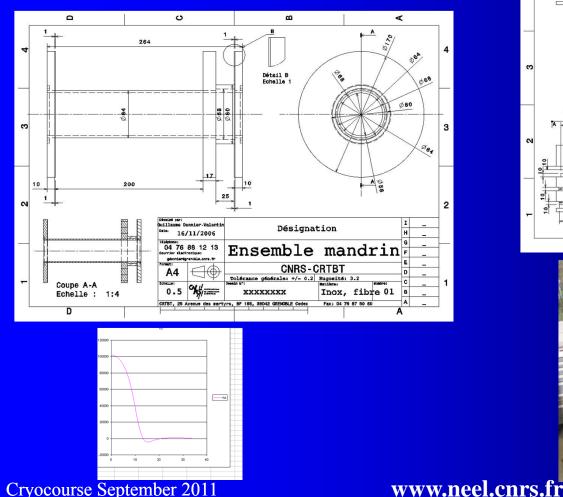

cnrs

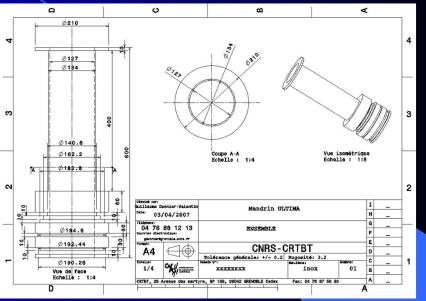
Impregnated NbTi superconducting solenoid

- Allows to choose the most appropriate superconducting wire
 - bigger wire in the center of the coil where the field is maximum
- Allows to design mandrel with material having the appropriate mechanical properties (define thickness)
 - Aluminum, stainless steel or fiber glass mandrel
- Make it possible to define the general shape of the coil to reach the specification (field homogeneity, maximum field, zero field zone etc)

 $\sigma_{\theta} \approx JB_{z}r$ with J : current density R: radius; B_{z} field

Cryocourse September 2011


www.neel.cnrs.fr


UNIVERSITE JOSEPH FOURIER

Impregnated NbTi Superconducting solenoid Mechanical part design, machining

• Under 3D CAD Catia

Mandrel and flange insulation

- The goal is to do electrical insulation between metallic mandrel, flange and the superconducting wire
 - Use of kapton or mylar thin sheet around the mandrel
 - Use of thin fiber glass plate (0.5 1 mm) against extremity

flange

Think about all wire entrances and outputs

- Envisage all needed passage of wire before beginning the winding
- Envisage all place and screwed hole you need to place contact, switch, resistance of protection, wire storage

Cryocourse September 2011

Impregnated NbTi Superconducting solenoid Winding and impregnation

- The winding
 - The goal is to make the most constant and homogeneous winding
 - *Determine the coil performance*
 - Field shape
 - Homogeneity
 - Superconducting wire stability
 - Control the wire tension
 - high tension : damage superconducting wire performance

- not enough tension : low wire density, risk of wire movement during operation

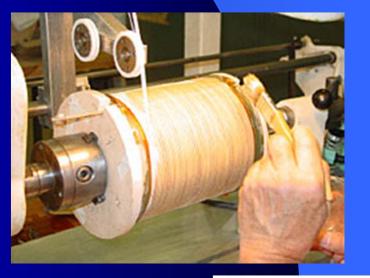
- due to high quantity of resin for impregnation, crack can easily appears

The impregnation

- To obtain a good insulation and a monolithic structure which cannot allow any movement of the conductor inside the coil
- Two techniques
 - Vacuum Impregnation using epoxy resin
 Direct impregnation layer per layer with a brush

Vacuum Impregnation using epoxy resin

- Need of low viscosity resin (lower than 200 Mpa.S)
 - The resin flow through the different layers of the coil and through the glass fiber cloth
- There is always the risk of bubble formation
 - Creates regions of reduced thermal conductivity
 - Solution Risk of wire movement \rightarrow a risk of quench
- protect coil zones where we don't want resins after the process
- *Well cleaning the impregnation device after use*
- We must adapt the impregnation device for each different coil geometry → expensive
- Essentials for Nb₃Sn coil (because of heat treatment 600 700°C))



Direct impregnation layer per layer with a brush

- Difficult to obtain homogeneous impregnation
 - Avoid to deposit high resins thickness ; risk of cracks
- More easier to control bubble formation
- More easier to implement
- Need handmade work
- Good solution for laboratory
 coil which are all different the ones
 from the others

Quench protection

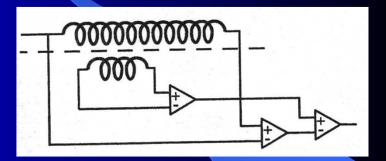
- to allow the magnet to quench safely
 - ♦ The quench
 - → conversion of the magnetic energy into heat inside the volume of the winding which has transited into the resistive state
 - Protection techniques consist in :
 - *decreasing the current as fast as possible*
 - without the appearance of over-voltages across or through the windings (max 500 - 1000 V)
 - because of thin insulated layers and low helium voltage breakdown (300 V/mm at 300 K)

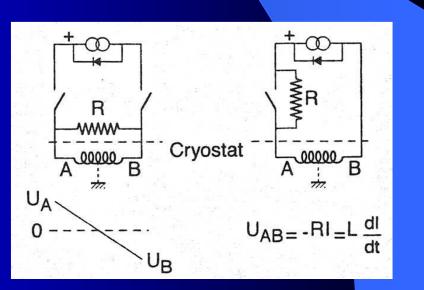
Cryocourse September 2011

Impregnated NbTi superconducting solenoid Quench protection

- Discharge the energy into an external resistor
- A significant part of energy is also dissipated inside the winding due to the Quench back effect
- Quench back effect
 - \diamond current decay \rightarrow magnetic flux variation \rightarrow eddy current in the coil mechanical structure \rightarrow losses \rightarrow heat \rightarrow cause the quench of others coil parts still in the superconducting state

The result is a very fast growth of the coil resistance



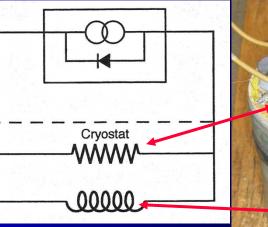


superconducting solenoid

Quench detector

- The device must detect a resistive voltage due to the quench which appear across the coil
 - One difficulty is that the inductive voltage is one or two order of magnitude greater
 - Electronic device allows to subtracting inductive voltage from the total magnet voltage
- The stored energy is extracted outside the coil into an external resistor by opening of breaker triggered by the quench detector

• For impregnated NbTi laboratory magnet


- Not necessary to have quench detector
 - *Relatively low energy (hundred of kilojoules)*
 - High current densities (hundred of amperes per square millimeters)
 - internal resistance increase rapidly

 The power source has its proper protective system against overvoltage

- If quench
 - the power source is switched of
 - The current is discharged through the free-wheel diode of the source
 - A protective resistor must be mounted in parallel between the current lead terminals to prevent destructive damage in case of electrical line rupture

Cryocourse September 2011

www.neel.cnrs.fr

UNIVERSITE JOSEPH FOURIER SCIENCES. TECHNOLOGIE SANTE

cnrs

Superconducting persistent switch

- Used in order to increase magnet stability over long periods of time
 - □ (L/R time constant is extremely long → magnet can be operated for days or even months at a nearly constant field.)

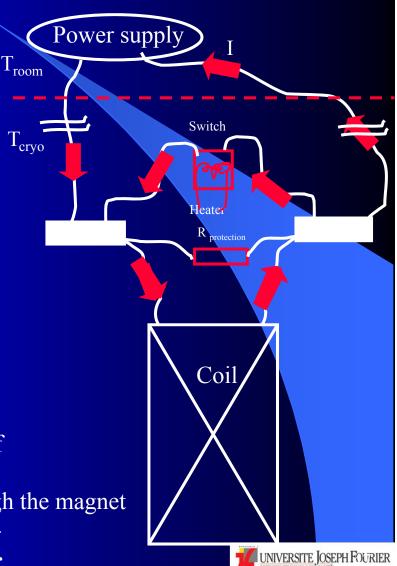
◆ to reduce the rate of helium boil-off → no need of continually supplying current to the magnet.

• Description

persistent switch is comprised of

- a short section of superconducting wire connected across the input terminals of a magnet
- Special superconducting wires with resistive CuNi matrix (multifilament NbTi wires)
- an heater used to drive the wire into the resistive, normal state.

Cryocourse September 2011

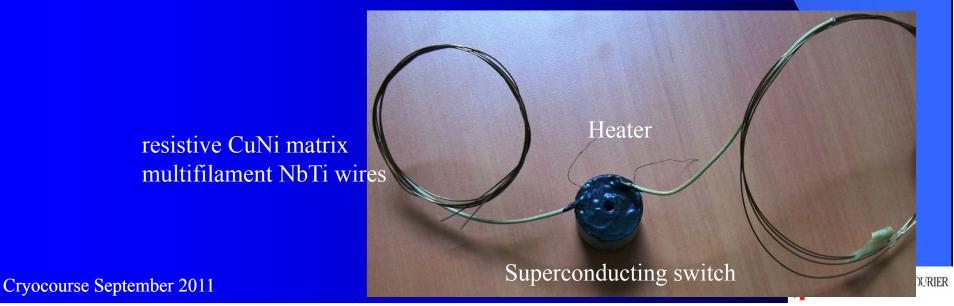


- Operation description
 - the heater is turned on (wire is resistive)
 - a voltage can be established across the terminals of the magnet
 →magnet can be energized.
 - the heater is turned off (wire becomes superconducting
 - changes in the magnet current cannot be made.

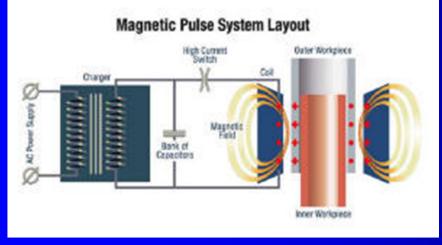
In this persistent mode of operation,

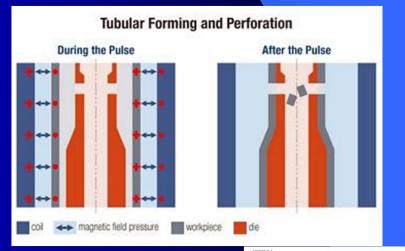
- the external power supply can be turned off
- •the heat input to the helium bath is reduced
- the current will continue to circulate through the magnet and the persistent switch without losses.

Cryocourse September 2011



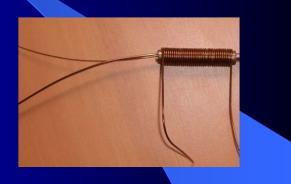
Superconducting persistent switch


- For a typical switch, the electrical heater in the persistent switch requires 300mW to drive the superconductor into the resistive state. The superconductive wire typically has 3 to 4 Ohms of resistance in the normal state
- ◆ special care must be taken in making the joints between the switch and the magnet leads. (To avoid current dissipation and then magnetic field decreasing). → Magneto forming contact



- The goal is to do an electrical contact with very low resistivity
 - A large current is discharged through a coil.
 - The discharging current creates a magnetic field. In the nearby sheet of metal an opposing magnetic field is induced. The result is that the two magnetic fields oppose and a force moves the sheet away from the coil.
 - Over a period of time the part is deformed, often to the shape of a mandrel
 - The method generates pressures up to 50 Kpsi creating velocities up to 900 fps

www.neel.cnrs.fr


UNIVERSITE JOSEPH FOURIER SCIENCES, TECHNOLOGIE, SANTÉ

Impregnated NbTi superconducting solenoid Magneto forming contact

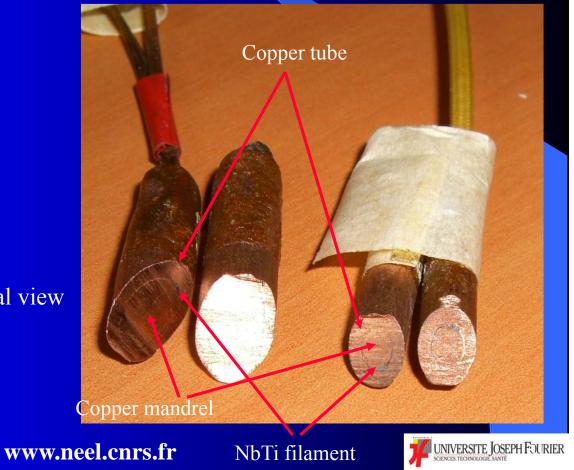
NbTi wire without copper matrix (NbTi filaments)

Just before the current discharge

Cryocourse September 2011

www.neel.cnrs.fr

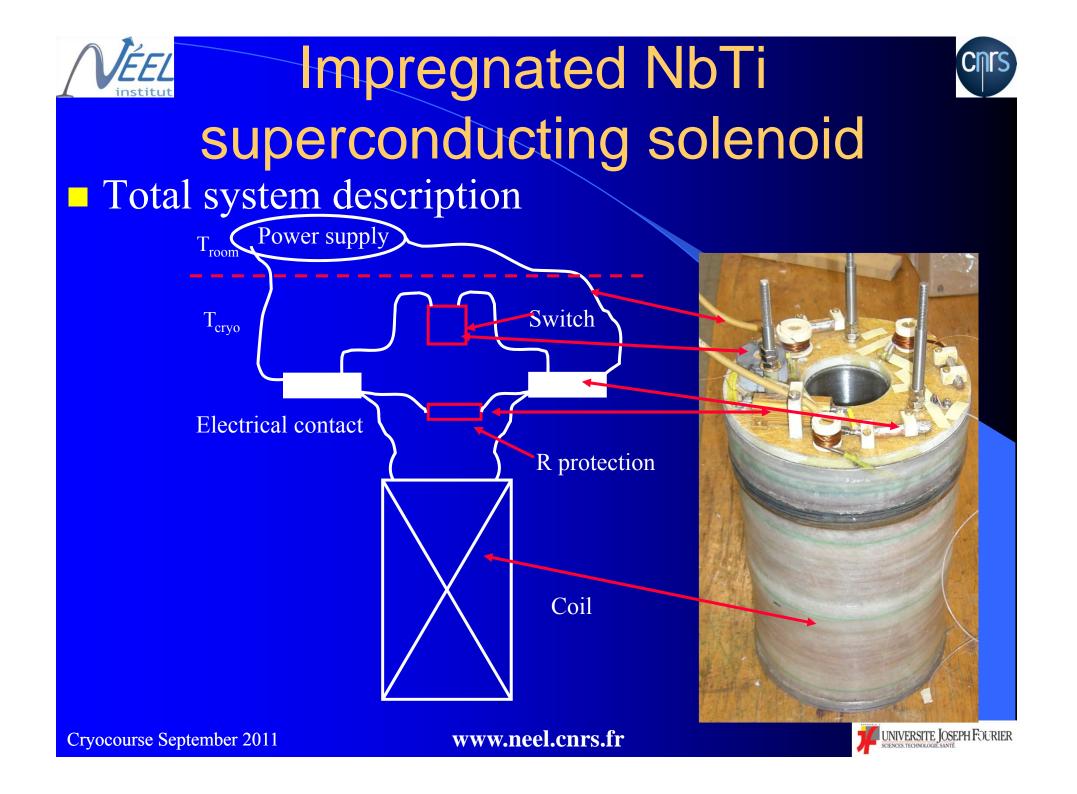
UNIVERSITE JOSEPH FOURIER



$\mathbf{R} \approx 10^{-17} \, \mathbf{\Omega}$

Cross-sectional view

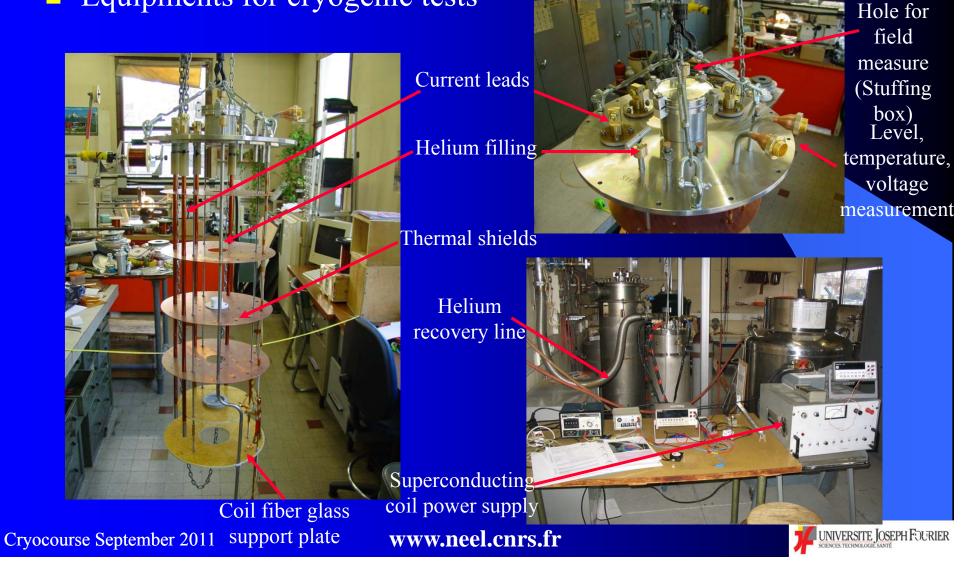
Cryocourse September 2011



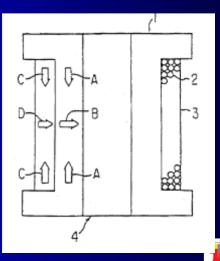
Magneto forming contact

- Advantages,
 - easy to control
 - Process is repeatable
 - no tool wear
 - very strong joints
 - Permanently joins dissimilar metals
 - Heat-free welding process (No heat inherent in the process to degrade materials)
 - Process is instantaneous
 - Very low electrical contact resistance for us

Cryogenic tests, training, field card


- The last step consist in
 - Coil training
 - Coil characterization
- The means we need
 - Liquid He cryostat with high section current leads
 - *High capacity helium recovery line to minimize pressure inside the cryostat during a quench*
 - Superconducting coil power supply (which automatically shut down in case of quench)
 - Hall sensor to do the field card of the coil
 - *Helium level sensors to control helium consumption inside cryostat (particularly in case of quench)*
 - Current source to drive the superconducting switch

Equipments for cryogenic tests



Training

- When we immerse a superconducting coil device in a cryogenic liquid
 - Due to thermal expansion for both superconducting wire and mandrel
 - contraction appears in the axial and in the radial direction, (thick arrows A and B, C and D)
 - In theory, no looseness can occur in the combination of these elements

www.neel.cnrs.fr

UNIVERSITE JOSEPH FOURIER

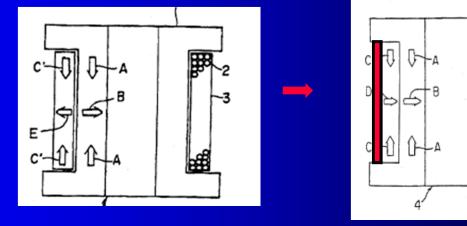
BUT

During the first cooling cracks appears in the epoxy impregnation

 energy is released which cause disturbance that can affect the conductor stability.

♦ Consequence

- We must applied to a new superconducting coil several thermal and electrical cycles before to obtain the optimal performances
- It is the training of the coil



Training :

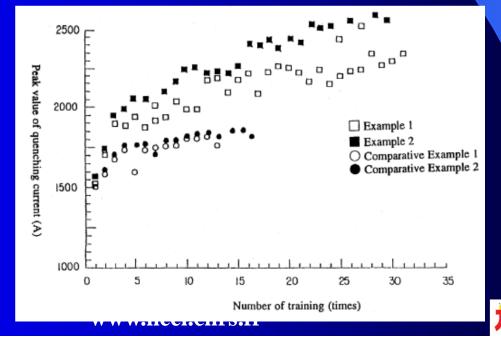
- Electrical current pass through the superconducting coil → electromagnetic force appears
 → superconducting coil exhibits an increased degree of contraction in the axial direction, but expansion in the radial direction (thick arrows C' and E)
- looseness occurs in the combination of mandrel and superconducting coil
- to reduce this problem → fiber glass binding band (to shrink) around the last layer of superconducting tape
- cracks in epoxy impregnation → some wire can slightly "move" → generation of frictional heat which can causes a quench.

fiber glass binding band

Cryocourse September 2011

www.neel.cnrs.fr

UNIVERSITE JOSEPH FOURIER



🚺 UNIVERSITE JOSEPH FOURIER

Impregnated NbTi Superconducting solenoid Training

- By doing several quench, the superconducting wire of the coil move toward the most stable position
 - the consequence is a direct improvement in the coil characteristic
 - Thermal and electromechanical cycles

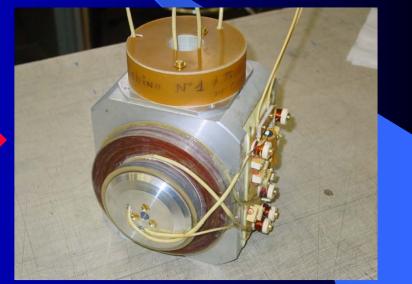
cryogenic tests

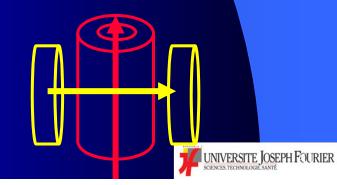
- Superconducting switch tests
 - To validate persistent mode
 - To see if there is no defective magneto forming contact
 - In case of defective contact, we observe a decrease of magnetic field (L/R)
- Field card
 - To compared with user's specifications
 - To validate the coil

Cryocourse September 2011

NbTi coils

• Two axis system (X, Y)

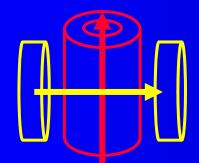

High field main solenoid + helmoltz coil



8.6 T (Z) ; 1.5T (X) at 4.2K Stainless steel and aluminum mandrel

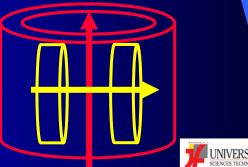
Zone of field homogeneity in the center of the coil by playing with winding shape

Cryocourse September 2011



NbTi coils Two axis system (X, Y) High field main solenoid + helmoltz coil

5T (Z) ; 0.5T (X) Without metallic part only use of fiberglass (G11)



Cryocourse September 2011

www.neel.cnrs.fr

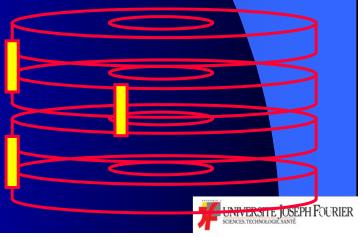
3T (**Z**) ; **2T** (**X**)

UNIVERSITE JOSEPH FOURIER

HTC superconducting coils

- With bismuth tape
 - Very brittle
 - ◆ Difficult to do helical coil : brittleness of the superconducting phase → very difficult to keep the same length of tape between each layers
 (the tape "don't like" to be bend in the transverse direction)

♦ Solution

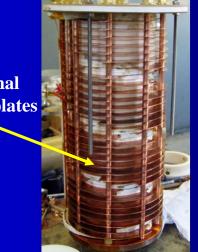

• Wind and react techniques : heat treatment to obtain the superconducting phase after windings

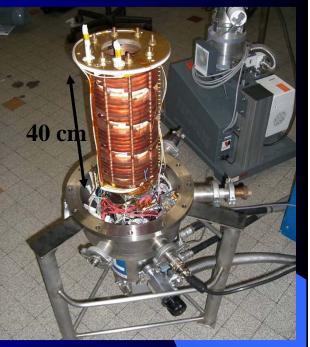
To do pancake coil

 With superconducting strap to do electrical connection between each pancake coils

Cryocourse September 2011

HTC BISCO 32 double Pancake coils


- Operate at 20 K in vacuum
- Cooling by conduction along the copper mandrel thanks to cryocooler
- Operating field 1.5 T operating current 210 A (tape section 0.33*4.5 mm²)
- homogeneity of 0.3% on 16 cm along the central axis of the coil



Thermal copper plates

32 double pancake coils www.neel.cnrs.fr

Tests with gifford macmahon cryocooler

Cryocourse September 2011

Others type of superconducting coils ◆ For electrical energy storage (800kJ)

SMES 26 pancake coils

- ♦ Operate in vacuum at 20 K
- Cooled with two cryocooler
- Superconducting tape "glued"

on thermal copper plate

Cryocourse September 2011

References

Handbook of cryogenic engineering J.G.
 Weisend II

Cryogenic engineering Thomas M. Flynn

Superconducting magnets Martin. N. Wilson

