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1 Introduction

1stlawd.tc

V1

V3

V4

p1
p2

p4p3

T1 T3

T4
T5

T2

Q1

Q4

P

n3
*

n1
*

Si2

Si1

Q3 V2

n2
*

Figure 1: General representation of a system that consists of a number of subsystems. The in-
teraction with the surroundings of the system can be in the form of exchange of heat, exchange of
matter, change of shape, and other exchange of energy. The interactions between the subsystems
are of a similar nature and lead to entropy production.

The laws of thermodynamics apply to well-de�ned systems. First we will discuss a quite
general form of the �rst and second law. I.e. we consider a system which is inhomogeneous, we
allow mass transfer across the boundaries (open system), and we allow the boundaries to move.
Fig.1 is a general representation of such a thermodynamic system. In their general form the �rst
and second laws are rather complicated, but in practical cases only a few terms (two or three)
play a role. Choosing a clever system is half the solution of many thermodynamical problems.

We will introduce the �rst and second law for open systems. Why it is important to formulate
the law for open systems can be illustrated with Fig.2. This is a schematic diagram of a
household refrigerator. It consists of a closed cycle with a compressor, a heat exchanger to room
temperature, a condenser, a throttling valve, and a heat exchanger with the cold compartment.
If we consider the whole fridge as our system we deal with a closed system. However, if we are
interested in the components of the fridge (such as the compressor, heat exchangers, throttling
valve) we are dealing with open systems. Therefore the number of open systems is much larger
then the number of closed systems.

Secondly we will treat the second law as an equality (see Eq.(4)) and not as an inequality

2



fridge.tc

TL

TH
P

QH

QL

Figure 2: Schematic diagram of a household refrigerator which consists of a compressor, a heat
exchanger to room temperature, a condensor, a throttling valve, and a heat exchanger with the
cold compartment. If we consider the whole fridge as one system (blue contour) we deal with a
closed system. However, if we are interested in the components of the fridge (compressor, heat
exchangers, throttling valve (red contours)) we are dealing with open systems.

such as in

dS � dQ

T
: (1)

Unfortunately, Eq.(1) is useless for most practical applications. In order to formulate the second
law in the form of an equality we will use the important concept of entropy production.

2 First Law

In the most general form of the �rst law the various energy �uxes, passing the system boundaries,
are integrated over the entire boundary. However, if heat and mass transfer and volume changes
are taking place only at some well-de�ned regions of the system boundaries, the integrals can
be replaced by summations. In that case the �rst law reads

_U =
X
k

_Qk +
X
k

�
Hk �

X
k

pk _Vk + P:
1 (2)

1We use the notation
�
Y for the �ow of a thermodynamic state function Y and _Y for the rate of change

of Y . Even though the dimensions of
�
Y and _Y are the same their physical meaning is distinctly di¤erent.
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In Eq.(2)

� U is the internal energy of the system, so _U is the rate of change of the internal energy.
The internal energy is a function of state.

� _Qk are the heat �ows at the various regions of the boundary which are labeled with k.
The convention is that a heat �ow is counted positive if heat �ows from outside into the
system. Internal heat �ows do not change the internal energy of the system as a whole,
so they don�t show up in Eq.(2).

�
�
Hk are the enthalpy �ows into the system de�ned as

�
Hk =

�
nkHmk; (3)

where
�
nk is the molar �ow of matter �owing into the system and Hmk the molar enthalpy of

this matter. Note that the increase of the internal energy _U is determined by the enthalpy
of the added matter

�
nkHmk and not by the internal energy

�
nkUmk. The di¤erence is

�
nkpkVmk; which is the work needed to press the matter into the system.

� _Vk are the rates of change of the volume of the system at various moving boundaries, pk
the corresponding pressure behind the moving boundary. Note that _Vk is not the volume
�ow of matter which might �ow across a certain boundary.

� P takes into account all other forms of work done on the system by its environment (such
as electricity, shaft work, etc.).

In the �rst law work and heat are treated on an equivalent basis.

3 Second Law

The second law reads

_S =
X
k

_Qk
Tk
+
X
k

�
Sk +

X
k

_Sik with _Sik � 0: (4)

Here

� _S is the rate of change of the entropy of the system.

� Tk represent the temperatures of the subsystems at which the heat �ows _Qk enter the
system.

This is especially clear when these two quantities show up in the same expression such as in the second law of
thermodynamics in which the rate of change of the entropy of a system is related to the entropy �ow into the
system. In the case of heat and work, which are no properties of state, this distinction is meaningless and we will
use the dot notation to indicate �ow rates.

4



�
�
Sk represent the entropy �ows into the system due to matter �owing into the system. The
entropy �ow is given by

�
Sk =

�
nkSmk (5)

where Smk is the corresponding molar entropy.

� _Sik represent the entropy production rates due to internal irreversible processes. Each of
the entropy production rates is always positive. This is an essential aspect of the second
law. The summation is over all processes in the system.

The most important irreversible processes are

� � heat �ow over a temperature di¤erence;

�mass �ow over a pressure di¤erence;

� di¤usion;

� chemical reactions;

� Joule heating;

� friction between solid surfaces.

Note that work does not contribute to the entropy change. In the second law work and heat
are treated in an essentially di¤erent way. In many cases _Q=T is considered as an entropy �ow
associated with the heat �ow. In this case the second law is a conservation law with �ow and
source terms.

4 Consequences of the �rst and second law

4.1 Heat engines

Fig.(3) is a schematic diagram of a heat engine. The machine is a cyclic machine. A heating
power _QH enters the engine at a temperature TH and a heat �ow _QL leaves it at a temperature
TL. Usually TL is around room temperature. A power P is produced. Note that the sign of
P di¤ers from the sign in Eq.(2). Due to the irreversible processes inside the engine entropy is
produced at a rate _Si.

In the steady state, after one cycle, the state of the engine is the same as in the beginning
of the cycle, thus on average

_U = 0 (6)

and
_S = 0: (7)

The system is closed so
�
H = 0 (8)

and
�
S = 0: (9)
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Figure 3: Schematic diagram of a heat engine. A heating power _QH enters the system at some
high temperature TH, and _QL is released at a temperature TL. A power P is produced and an
entropy _Si is produced per second.

The boundaries of the system are �xed so

_Vk = 0: (10)

The �rst law. Eq.(2), with Eqs.(6), (8), and (10), gives

_QH � _QL = P: (11)

The second law, Eq.(4), with Eqs.(7) and (9) gives

0 =
_QH
TH

�
_QL
TL

+ _Si with _Si � 0 (12)

or

_Si =
_QL
TL

�
_QH
TH

� 0: (13)

Relation (13) already allows a very important conclusion: suppose that there is no heat
released at low temperature then

_QL = 0: (14)

In this case Eq.(13) would reduce to

_Si = �
_QH
TH

� 0: (15)

As TH > 0 and _QH > 0 Eq.(15) is false so our assumption, Eq.(14), must be false. This gives the
well-known result that a heat engine can operate only if heat is released at some low temperature.
In fact this is the Kelvin formulation of the second law.
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Eliminating _QL with Eq.(11) from Eq.(13) gives

P =

�
1� TL

TH

�
_QH � TL _Si: (16)

As _Si � 0 we must require
P �

�
1� TL

TH

�
_QH: (17)

The e¢ ciency is de�ned as the ratio

� =
P
_QH
: (18)

With Eq.(17) follows

� � 1� TL
TH
: (19)

This famous relation shows that the e¢ ciency of thermal engines has a maximum given by the
Carnot e¢ ciency de�ned as

�C = 1�
TL
TH
: (20)

4.2 Refrigerators

cooler.tc
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Figure 4: Schematic diagram of a refrigerator. _QL is the cooling power at some low temperature
TL, and _QH is released at a temperature TH. A power P is supplied to the system and an entropy
_Si is produced per second.

Refrigerators, as depicted in Fig.4, can be treated in a similar way as heat engines. The �rst
law, Eq.(2), gives

_QH = P + _QL: (21)
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The second law, Eq.(4), reads

0 =
_QL
TL

�
_QH
TH

+ _Si with _Si � 0 (22)

or

_Si =
_QH
TH

�
_QL
TL

� 0: (23)

Eliminating _QH from Eqs.(21) and (23) gives

_Si =
P + _QL
TH

�
_QL
TL

� 0: (24)

If there would be no work done
P = 0 (25)

then Eq.(24) would reduce to

_Si =

�
1

TH
� 1

TL

�
_QL � 0: (26)

This is false since both _QL > 0 and TH > TL. This means that Eq.(25) must be false: heat
cannot �ow from a low temperature to a high temperature without doing work. This is Clausius
formulation of the second law.

Turning back to Eq.(24) we see that

P =
TH � TL
TL

_QL + TH _Si: (27)

As _Si � 0 we must require
P � TH � TL

TL
_QL: (28)

The coe¢ cient of performance (COP) is de�ned as the ratio

� =
_QL
P
: (29)

With (28) follows

� � TL
TH � TL

: (30)

This relation shows that the COP of refrigerators has a maximum given by

�C =
TL

TH � TL
: (31)

This quantity is called the Carnot e¢ ciency of refrigerators.
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Figure 5: Heat conduction experiment. A heat �ow _Q1 enters at T1 and _Q2 leaves at T2.

4.3 Heat conduction

The third system on which we apply the laws of thermodynamics is a simple heat conduction
experiment (see Fig.(5)). The system in consideration is a section of a bar in which a heat �ow
_Q1 enters at a temperature T1 and _Q2 leaves at T2. In the steady state the internal energy of
the bar section is constant so

_U = 0: (32)

The entropy of the bar section is constant as well so

_S = 0: (33)

Furthermore the system is closed so
�
H = 0 (34)

and
�
S = 0 (35)

and no work is done
P = 0: (36)

The boundaries of the system are �xed so

_Vk = 0: (37)

The �rst law reduces to the rather trivial relation

_Q1 = _Q2 = _Q: (38)

The second law gives

0 =
_Q

T1
�

_Q

T2
+ _Si with _Si � 0 (39)

or
_Si =

�
1

T2
� 1

T1

�
_Q � 0: (40)

or
_Si =

T1 � T2
T1T2

_Q � 0: (41)
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Relation (40) is an expression of the entropy production during transport of heat over a tem-
perature di¤erence. As _Q > 0, Eq.(40) demands that T1 � T2, in other words: heat �ows from
a high temperature to a low temperature. This is again the Clausius formulation of the second
law.

For small temperature di¤erences the heat �ow in a bar of length L and with cross-sectional
area A can be written as

_Q = �
A

L
(T1 � T2) (42)

with � the thermal conductivity. The entropy production rate can now be expressed as

_Si = �
A

L

(T1 � T2)2

T1T2
; (43)

which shows the quadratic dependence of the entropy production on the "driving force" (T1�T2),
which is characteristic for expressions of the entropy production in general.

5 The third law

5.1 Introduction

In the formulation of the third law we consider a closed system (
�
nk = 0) in internal equilibrium.

As the system is in equilibrium there are no irreversible processes so _Si = 0. During the
application of heat temperature gradients are generated in the system, but the associated entropy
production can be kept low enough if the heat is applied slowly. In that case the second law
reduces to

_S =
_Q

T
: (44)

The increase in entropy due to the supplied heat �Q is given by

�S =
�Q

T
: (45)

The heat capacity CX is de�ned by
�Q = CX�T: (46)

The index X is a symbolic notation for all parameters which are kept constant during the heat
supply. I.e. when the volume is constant we determine the heat capacity at constant volume
CV, if the pressure is constant we determine Cp, if the magnetic �eld is constant CB, etc. In
the case of a phase transition from liquid to solid, or from gas to liquid, the parameter X is the
fraction of one of the two components. Combining Eqs.(45) and (46) gives

�SX =
CX
T
�T: (47)

Integration of Eq.(47) from a temperature T0 to an arbitrary temperature T gives the entropy
at temperature T

SX (T ) = SX (T0) +

Z T

T0

CX (T
0)

T 0
dT 0: (48)

The entropy depends on the parameters X, which are kept constant in the whole range from T0
to T .
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5.2 Mathematical formulation of the third law

First of all the third law states that:
1. the integral in Eq.(48) is �nite for T0 ! 0.
So we may write

SX (T ) = SX (0) +

Z T

0

CX (T
0)

T 0
dT 0: (49)

The second important element of the third law is that:
2. the value of the entropy at absolute zero SX (0) is independent of X.
In mathematical form

SX (0) = S (0) : (50)

So Eq.(49) can be further simpli�ed to

SX (T ) = S (0) +

Z T

0

CX (T
0)

T 0
dT 0: (51)

Relation (50) is represented in graphical form in Fig.6. The property (50) can also be formulated

3rdlaw.tc
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Figure 6: Schematic representation of the temperature dependence for various values of the
external conditions X 1, X 2, and X 3. In the left �gure the limiting value at T = 0 depends on
the value of X. This is not the real case. Due to the third law all curves tend to the same value
at T = 0, as represented in the right �gure.

as

lim
T!0

�
@SX (T )

@X

�
T

= 0: (52)

This relation can be seen as the mathematical formulation of the third law. In words: at absolute
zero all isothermal processes are isentropic.
3. Take the entropy at 0K equal to zero

S (0) = 0 (53)
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Figure 7: In the left �gure the limiting value at T = 0 depends on the value of X. If this would
be true absolute zero could be reached in a �nite number of steps. However, this is not the real
case. Due to the third law all curves tend to the same value at T = 0, as represented in the right
�gure. Reaching absolute zero requires an in�nite amount of steps.

so that Eq.(51) reduces to its �nal form

SX (T ) =

Z T

0

CX (T
0)

T 0
dT 0: (54)

Eq.(53) has a deep physical meaning, but at this moment it is just a convenient expression for
the entropy.

5.3 Consequences of the third law

5.3.1 Can absolute zero be obtained?

The reason that T = 0 cannot be reached according to the third law is explained in Fig.7.
Suppose that the temperature of a substance can be reduced by an isentropic change by changing
the parameter X from X2 to X1. In the left �gure we see that absolute zero can be reached in a
�nite number of steps. In reality an in�nite number of steps would be needed, as shown in the
right �gure.

5.3.2 Speci�c heat

Suppose that the heat capacity of a sample in the LT region can be approximated by

CX (T ) = C0T
� (55)

then Z T

T0

CX (T
0)

T 0
dT 0 = C0

Z T

T0

T 0��1dT 0 =
C0
�
(T� � T�0 ) : (56)
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The requirement that the integral must be �nite for T0 ! 0 implies that

� > 0: (57)

So the heat capacity of all substances must go to zero at absolute zero

lim
T!0

CX (T ) = 0: (58)

However, the molar speci�c heat at constant volume of a classical monatomic ideal gas (helium)
is given by

CV =
3

2
R: (59)

This corresponds with � = 0 in Eq.(55). Substitution of Eq.(59) in Eq.(48) gives

SV (T ) = SV (T0) +
3

2
R ln

T

T0
: (60)

In the limit T0 ! 0 this expression diverges. Clearly Eq.(59) does not satisfy Eq.(58). This
means that the existence of a classical ideal gas, with a heat capacity given by Eq.(59), violates
the third law of thermodynamics. This reveals the fundamentally quantum mechanical nature
of the third law.

The con�ict is solved as follows: At a certain temperature the quantum mechanical nature
of matter starts to dominate the behavior. This changes the statistics of the system. Fermi
particles follow Fermi-Dirac statistics; Bose particles follow the Bose-Einstein statistics. In both
cases Eq.(59) is no longer valid. For Fermi gases the molar speci�c heat at constant volume in
the low-temperature limit is given by

CV =
�2

2
R
T

TF
(61)

with R the molar ideal gas constant and the Fermi temperature TF given by

TF =
1

8:25

N2
Ah

2

MR

�
NA
Vm

�2=3
: (62)

Here NA is Avogadro�s number, Vm the molar volume, and M the molar mass. For Bose gases

CV = 1:93R

�
T

TB

�3=2
(63)

with TB given by

TB =
1

11:9

N2
Ah

2

MR

�
NA
Vm

�2=3
: (64)

The speci�c heats given by Eq.(61) and (63) both satisfy Eq.(55).
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5.3.3 Vapor pressure

There is still another property of matter that seems to violate the third law. The heat of
evaporation of 3He and 4He has a �nite limiting value given by

L = L0 + CpT: (65)

So the entropy of a liquid-gas mixture is

S = Sl (T ) + x

�
L0
T
+ Cp

�
(66)

where Sl (T ) is the entropy of the liquid and x is the gas fraction. Clearly the entropy change
during the liquid-gas transition diverges for T ! 0. This violates Eq.(52).

Nature solves the apparent violation of the third law as follows: at low temperatures the
vapor pressure pv is given by

pv = p0

�
T

T0

�Cp=R
exp

�
L0
R

�
1

T0
� 1

T

��
: (67)

Where p0 is the vapor pressure at some low temperature T0. For 4He at T0 = 1 K we have
p0 = 15:6 Pa and L0 = 7:17R. For 3He at T0 = 1 K we have p0 = 1160 Pa and L0 = 2:47R.
The relation (67) for 3He is plotted in Fig.8. Note the highly compressed pressure scale. Also
plotted are the p� T relations for �xed particle distance (or �xed molar volume)

p =
kBT

�3p
(68)

with kB the Boltzmann constant and �p the average particle distance

�p =

�
Vm
NA

�1=3
: (69)

Plotted are the cases that �p is 1 �m, 1 mm, and 1 m respectively. Fig.8 shows e.g. that at
about 140 mK the average particle distance in the gas above the liquid 3He is 1 �m. At 65 mK
it is 1 mm, and at 43 mK the particle distance is as large as 1 m!

In the interstellar space the average particle distance is about 1 cm. From Fig.8 it can be
seen that the average particle distance for the vapor of liquid helium-three is also about 1 cm
at a temperature of 60 mK. This means that the particle density above liquid 3He at 60 mK is
the same as between hydrogen atoms in space. At a temperature of 40 mK there is one atom in
1 m3. In other words: the best vacuum in the universe is in the vacuum chamber of a dilution
refrigerator below 60 mK.

The very low vapor pressure of helium has still some other unexpected consequence: if there
is a leak in a system at very low temperatures the helium leaks to the vacuum space as a liquid.
This will be unobserved at room temperature until the layer of liquid at the outside of the system
is so thick that a droplet is formed. In the course of time the droplet grows and eventually it falls
on the bottom of the vacuum chamber which usually is at a temperature of 4.2 K. There it will
evaporate and give rise to a sudden increase in the pressure. Suddenly the thermal insulation is
broken between the cold regions of the system and the relatively warm vacuum chamber.
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Figure 8: Vapor pressure of 3He as function of temperature. Note the highly compressed pressure
scale. Also plotted are the p�T relations in the cases that the particle distance is 1 �m, 1 mm,
and 1 m respectively.

5.3.4 Can 4He gas become a super�uid?

At su¢ ciently low temperatures and su¢ ciently high densities Bose-Einstein can take place in
an ideal gas. We consider now the possibility that BE-condensation can take place in the vapor
above liquid 4He. The expression for the Bose-Einstein condensation temperature is given by
Eq.(64) or the particle density at the BE-condensation is�

NA
Vm

�
B

=

�
11:9MRT

N2
Ah

2

�3=2
: (70)

The particle density at the liquid-vapor transition for helium is with Eq.(67)�
NA
Vm

�
lv

=
NApv
RT

=
NAp0

RT
5=2
0

T 3=2 exp

�
L0
R

�
1

T0
� 1

T

��
: (71)

Substituting the proper numbers shows that the density at which the gas becomes liquid is
always much smaller than the density at which BE condensation would take place�

NA
Vm

�
lv

�
�
NA
Vm

�
B

: (72)

Now suppose that we have gaseous helium at some low pressure p and temperature T .
If we now increase the pressure at �xed T there are two possibilities for phase transitions:
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BE condensation or condensation of the gas into the liquid phase. Eq.(72) shows that the
condensation into the liquid comes at lower density than the BE condensation. Hence the
vapor of helium never reaches a high enough density to show BE-condensation. The vapor
always behaves as a classical gas with the speci�c heat given by Eq.(59) even at the lowest
temperatures. The con�ict with Eq.(57) is solved simply by the fact that, at low temperatures,
there is no gas at all.

5.3.5 Latent heat of melting

The melting curves of 3He and 4He both extend down to absolute zero at �nite pressure. At
the melting pressure liquid and solid are in equilibrium. We may take for the parameter X in
Eq.(52) the fraction of solid. It is a direct consequence of the third law that the entropy of the
solid is equal to the entropy of the liquid at T = 0. As a result the latent heat of melting is zero
and the slope of the melting curve must extrapolate to zero at T = 0.

5.3.6 Thermal expansion coe¢ cient

The expansion coe¢ cient is de�ned as

�V =
1

Vm

�
@Vm
@T

�
p

: (73)

Due to the Maxwell relation �
@Vm
@T

�
p

= �
�
@Sm
@p

�
T

: (74)

Comparing with Eq.(52) with X = p, shows that

lim
T!0

�V = 0: (75)

5.4 Paradox

The Carnot e¢ ciency of refrigerators is given by Eq.(31). This can be used to express the
optimum cooling power of refrigerators as

_QL =
TL

TH � TL
P: (76)

So we see that the cooling power _QL ! 0 when TL ! 0 even for the best refrigerators. Now
consider a sample with heat capacity

C (T ) = C0T
� (77)

(with C0 a constant) which is cooled with a cooling power _QL. Then the rate of change in
temperature is

dTL
dt

= �
_QL

C (TL)
(78)
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or, in the ideal case,
dTL
dt

= � 1

C0T�L

TL
TH � TL

P: (79)

In the low-temperature limit TH � TL so

dTL
dt

� �T
1��
L

C0TH
P: (80)

Integration gives

T�L (t) � T�L0 �
�P

C0TH
t: (81)

As � > 0 (Eq.(57)) Eq.(81) shows that, starting at a some temperature TL0; absolute zero will
be reached (T�L (t0) = 0) after a time

t0 =
C0T

�
L0TH
�P

=
C (TL0)TH

�P
: (82)

This is a �nite amount of time! So absolute zero can be reached in a �nite amount of time.

6 How to measure very low T

If some pioneering experimental group enters a new temperature region for the �rst time it
has no calibrated thermometer for this temperature. At higher temperatures one can use the
pressure of an ideal gas in a constant-volume cell and use the ideal gas law. However, we have
seen that below about 300 mK there simply is no more gas. So, how does one measure, basically,
temperatures below 300 mK? The answer is that one uses on the second law of thermodynamics.

In order to explain the basic principle we will discuss the question for an adiabatic demag-
netization experiment where one gets very low temperatures by slowly reducing the magnetic
�eld. Suppose that, in some high-temperature region, the entropy S is a well-known function of
temperature T as given in Fig.9. The starting point a of the cycle has entropy Sa, temperature
is Ta, and magnetic �eld Bi.
- now we lower the magnetic �eld adiabatically and reversibly (so avoiding all possible irre-
versible processes) to a value Bf . As a result we arrive at point b. The temperature is some
unknown low value Tb, but the entropy has remained constant

Sb = Sa: (83)

- next a small amount of heat �Q is supplied to the system bringing the system in point c. Both
the temperature and entropy are increased. In good approximation

Sc � Sb =
�Q

TX
: (84)

- Next we increase the magnetic �eld adiabatically and reversibly (so avoiding all possible ir-
reversible processes) to a the original value Bi and we arrive in point d. The temperature is
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Figure 9: Thermal cycle to measure the unknown temperature TX. The solid blue lines give the
ideal cycle. The dotted blue lines the cycle with irreversibilities.

increased from Tc to Td. while the entropy remains constant

Sd = Sc: (85)

As Td is in the high temperature region it can be measured.
- By removing a the heat �Q0 the cycle is closed. Since the entropy in the high-temperature
region is a well known function of T we have

�Q0 = T0 (Sd � Sa) : (86)

Combining all these relations leads to

TX =
�Q

�Q0
T0: (87)

Fig.9 also gives a more realistic cycle with entropy production during the steps where the
�eld is changed. The cycle end in point d�with

Sd0 > Sd: (88)

The amount of heat to be removed to bring the system back to point a is

�Q00 = T0 (Sd1 � Sa) > �Q0: (89)
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As a result we will have determined an apparent low temperature

T 0X =
�Q

�Q00
T0 (90)

which is lower than the real temperature TX.
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