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1 Introduction

Dilution refrigerators are fantastic machines: starting from 4.2 K they provide continuous cooling
to temperatures as low as 2 mK without moving parts in the low-temperature region. Also from
the thermodynamic and hydrodynamic point of view they are interesting machines since they
are based a unique combination of a Fermi liquid and a super�uid in the ultralow temperature
region.

2 Schematic diagrams
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Figure 1: Schematic diagram of a dilution refrigerator. The components are described in the
text.

Figs.1 and 2 are schematic diagrams of dilution refrigerators. Fig.1 represents the complete
system while Fig.2 represents only the low-temperature part. The working �uid is 3He which is
circulated by pumps at room temperature. In this Section we will only mention the components.
The how and why will be discussed in later Sections.

1. The pumps at room temperature bring the pressure of the 3He to a value pc which usually
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Figure 2: Schematic diagram of the low-temperature part of a dilution refrigerator. The compo-
nents are described in the text.

is a few hundred millibar. It enters the cryostat and is precooled by the 4He bath to 4.2
K.

2. The 3He enters the vacuum chamber. There it is further cooled to the temperature T1K
of the 1K bath, which is around 1.2-1.5 K. As pc is larger than the 3He vapor pressure
pv (T1K) at T1K the 3He condenses in the heat exchanger with the 1K bath. The heat of
condensation is removed by the 1 K bath.

3. Next the 3He enters the main impedance. The value of the �ow resistance is chosen in
such a way that pc > pv (T1K) for the design �ow rate of the machine.

4. Next the 3He exchanges heat with the still at a temperature TS which is around 0.5 to 0.7
K.

5. Next the 3He enters the secondary impedance. The value of the �ow resistance is chosen
in such a way that the pressure of the 3He in the heat exchanger to the still is larger than
the local vapor pressure pv (TS). This prevents that the 3He, which was lique�ed in the 1 K
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bath, evaporates again in the still heat exchanger. With TS = 700 mK the vapor pressure
pv is about 100 Pa.

6. Next the 3He enters a set of counter�ow heat exchangers where it is cooled by the 3He in
the dilute phase which �ows upward in the other side of the heat exchangers. Usually the
heat exchangers in the high-temperature region are of the tube-in-tube type. In the colder
regions they are more complicated.

7. After leaving the coldest heat exchanger the 3He enters the mixing chamber. In the
mixing chamber the 3He passes the phase boundary (is diluted) between the concentrated
phase and the dilute phase. The heat needed for the dilution is the cooling power of the
refrigerator. The 3He leaves the mixing chamber in the dilute phase.

8. On its way up the cold 3He in the dilute phase cools the warm �ow of 3He in the concen-
trated phase �owing down.

9. The 3He enters the still. The liquid in the still contains only 0.7% 3He; the rest is 4He.
Yet the vapor in the still is practically (96%) pure 3He. A heating power _QS is supplied
to the still to maintain a steady �ow of 3He through the system.

The condensation of 3He takes place at a point where the incoming �ow is in thermal contact
with the 1 K bath. This is a fairly well-de�ned point in the system. Knowing the volumes at
the concentrated side, including the volume of half the mixing chamber, one knows exactly how
much 3He is needed to force the phase boundary in the mixing chamber. Given the position of
the phase boundary one can also calculate the quantity of 4He to guarantee that there is a liquid
surface in the still. There is some 3He in the dilute side. This has to be added to the quantity
of 3He already calculated in the concentrated side and the quantity in the room-temperature
part of the machine. Now that we know the quantities of 3He and 4He we can determine the
composition of the gas mixture needed for the dilution fridge.

Nowadays so-called dry dilution refrigerators are available in which the liquid nitrogen and
helium baths are replaced by a pulse-tube cooler. A schematic is given in Fig.3. An added
advantage is that the 1K bath with its pumping system is no longer needed.
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Figure 3: Schematic drawing of a dry dilution refrigerator.

3 Thermodynamics

3.1 1K bath and still

3.1.1 Thermal properties of pure 3He

The cooling in the mixing chamber is due to the dilution of 3He from the concentrated phase to
the dilute phase. In order to understand this cooling process we need to know the thermody-
namics of 3He-4He mixtures. However, we can understand the function of the 1K bath and the
still surprisingly well from the thermodynamic properties of pure 3He. Therefore we give here
the Hm � T diagram of 3He (Fig.4).

3.1.2 The 1K bath

In this section we will �rst show why a precooling stage, such as the 1K bath is necessary. In
order to do this we assume that it would not be there. Consider the system inside the dotted
contour of Fig.2. The �rst law in this case reads

0 = _Q+
�
n3 (Hm1 �Hm2) (1)
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Figure 4: Hm� T diagram of 3He. Lines of constant pressure are given together with the phase
diagram.

where the index 1 (2) applies to the entrance (exit) of the 3He �ow at a molar rate of
�
n3 and _Q

is heating power supplied somewhere to the system. If there is no 1 K bath the temperature of
the incoming 3He is 4.2 K. With the pressure of 0.5 bar the corresponding molar enthalpy can
be obtained from Fig.4 to be Hm1(0:5 bar, 4:2 K)= 99 J/mol. Now suppose that the dilution
refrigerator works properly and that the temperature of the pumped vapor leaves our system at
a temperature of 0.7 K. In that case Hm2(0 bar, 0:7 K)= 35 J/mol. With these numbers Eq.(1)
gives

_Q =
�
n3 (35� 99) = �64

J
mol

�
n3: (2)

Eq.(2) shows that a positive �ow is only possible if the applied heat is negative, so if there is
additional cooling. This additional cooling is provided by the 1K bath. The cooling power from
the 1K bath should be at least the value given by Eq.(2).

3.1.3 Still

Perhaps it is a bit surprising that a cooling machine like a dilution refrigerator needs heating at
some point (in this case the still) to operate properly. The reason for this strange requirement
will be explained in this Section.

Due to the presence of the 1 K bath liquid at a temperature of 1.2 K enters the dotted
contour in Fig.2 instead of gas at 4.2 K. Fig.4 tells us that Hm1 = 6 J/mol. Substituting this
value in Eq.(1) gives the value for the heating power

_QS =
�
n3 (35� 6) = 29

J
mol

�
n3: (3)
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This heat usually is supplied at the still, hence the label S. Note that the heating power at the
still is calculated without using the mixture properties! The reason is that only pure 3He is
passing the boundaries of our system. The cooling power, that has to be provided by the 1 K
bath to change the 3He from gas at 0.5 bar and 4.2 K to liquid at 0.5 bar and 1.2 K, is

_Q1K =
�
n3 (99� 6) = 93

J
mol

�
n3: (4)

In Eq.(2) we saw that 66 J/mol would have been su¢ cient. This explains why heating power
to the still is needed to keep the circulation going. The 1 K bath has too much cooling power.
On the other hand the heating power to the still is a very convenient way to set the circulation
rate to the desired value.

3.2 3He-4He mixtures

The phase diagram of 3He-4He, depicted in Fig.5, gives some important properties as functions
of the 3He concentration x. The region between the lines with label xd and xc is the region
of coexisting phases. The lambda line gives the super�uid transition temperature of the 4He
component. Also the Fermi temperature of the 3He component is given. Fig.6 shows what
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Figure 5: Phase diagram of 3He-4He mixtures. In this �gure is given the region of coexisting
phases, the lambda line giving the super�uid transition temperature, and the Fermi temperature
of the 3He component as functions of the 3He concentration x.

happens if a mixture with x=40% is cooled from 2 K to some very low temperature.

1. At the starting point the mixture is homogeneous and both components behave as normal
�uids.
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2. At about 1.5 K the 4He component becomes super�uid.

3. At 1.2 K the temperature is equal to the Fermi temperature of the mixture. Apart from
this nothing special happens at this temperature.

4. At about 750 mK the mixture starts to decompose. At the top of the container a small
layer of liquid shows up which has a high helium 3He concentration of 80%.

5. If the temperature is lowered further the volume of the upper phase, the concentrated
phase, increases and the 3He concentration increases as well. The volume and 3He con-
centration of the lower phase, the dilute phase, both decrease. E.g. at 500 mK xd = 22%
and xc = 90%.

6. At 0 K xd = 6:6% and xc = 100%.
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Figure 6: Sequence of events if a mixture of 40% is cooled from 2 K to very low temperatures.

In the dilute channel of the dilution refrigerator vs = 0 in good approximation. In that case
the super�uid hydrodynamics results in the well-known relation

p+ �0gz ��� pf = constant. (5)

Eq.(5), applied to the dilute channel between the mixing chamber and the still, results in

pM + �0gzM ��M � pfM = pS + �0gzS ��S � pfS (6)

where the index M applies to the mixing chamber and the index S to the still. Usually the
pressure variations can be neglected. This means that, in a well-designed machine, the �ow
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resistance of the dilute channel is small. The gravitation and fountain pressure at these low
temperatures can neglected as well. In that case relation (6) simpli�es to

�(TM; xM) = � (TS; xS) : (7)

In other words: in the dilute channel the osmotic pressure is constant. At low temperatures
the osmotic pressure in the mixing chamber is fairy temperature independent and �xed to a
value close to 2200 Pa (see Fig.7). In that case Eq.(7) is a relation of the temperature and
concentration in the still. The temperature and concentration dependence in the dilute channel
can be obtained from the isotones in Fig.7. Typically TS = 700 mK. As a result of Eq.(7) the
3He concentration in the still xS is about 0.7%.

3.3 The mixing chamber

The cooling power _QM of the mixing chamber, at a mixing chamber temperature TM; can be
understood on the basis of the second law of thermodynamics. If the mixing is reversible we
have in the steady state

0 =
_QM
TM

+
�
n3 [S3 (TM; xc)� S3 (TM; xs)] : (8)

We must require that the mixing is isothermal since otherwise the mixing is irreversible and an
entropy production term would have to be included in the second law. In Eq.(8)

�
n3 is the 3He

circulation rate, S3 (TM; xc) is the molar entropy of the 3He entering the mixing chamber; S3
is the entropy of one mol 3He in the dilute phase, and xs is the saturated 3He concentration
of the dilute phase, which is also a function of T . At low enough temperatures xc = 1 and
S3 (TM; xc) = Sc (TM), the molar entropy of pure 3He. From Eq.(8) the cooling power is

_QM =
�
n3TM [S3 (TM; xs)� Sc (TM)] : (9)

The 3He in the concentrated phase and in the dilute phase behave as ideal Fermi gases with
the molar heat capacity at constant volume given by

CV =
�2

2
R

T

TF (x)
(10)

with R the molar ideal gas constant and TF the Fermi temperature. Based on Eq.(10) the molar
entropy is also given by

SF =
�2

2
R

T

TF (x)
: (11)

For the concentrated phase

Sc (T ) =
�2

2
R

T

TF (1)
(12)

where TF (1) is the Fermi temperature of pure 3He. For the entropy of the dilute phase we can
write

S3 (TM; xs) = SF (TM; xs) =
�2

2
R

TM
TF (xs)

(13)
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where TF (xs) is the Fermi temperature of the dilute phase. So Eq.(9) can be written as

_QM =
�
n3
�2

2
RT 2M

�
1

TF (xs)
� 1

TF (1)

�
: (14)

Eq.(14) clearly shows that the cooling power of the mixing chamber is due to the di¤erence in
Fermi temperature between the dilute and the concentrated phase. The Fermi temperature is
given by

TF =
1

8:25

h2

m�
3k

�
NA
Vm (x)

�2=3
(15)

with k Boltzmanns constant, Vm the volume of the mixture containing one mol of 3He. In this
expression m�

3 is the e¤ective mass of the
3He. In the dilute phase m�

3d = 2:46m3 and in the
concentrated phase m�

3c = 2:8m3, with m3 the mass of the bare 3He atom. The main di¤erence
between TF (xs) and TF (1) is due to the di¤erence in the molar volumes. At low temperatures
TF (xs) = 393 mK, TF (1) = 1:8 K, V3 (xs) = 426 cm3 and V3 (1) = 37 cm3. So the cooling power
of a dilution refrigerator is really based on the increase of molar volume (dilution) of the 3He!

3.4 The osmotic enthalpy

In equilibrium the chemical potential of 3He and 4He in the two phases must be the same. So

�3 (T; xs) = �c (T ) : (16)

Using this relation Eq.(9) can also be written as

_QM
�
n3

= [�3 (TM; xs) + TMS3 (TM; xs)]� [�c (TM) + TMSc (TM)] : (17)

The concentrated phase is pure 3He so the chemical potential is equivalent to the Gibbs free
energy per mole

�c = Gc = Hc � TSc: (18)

So we can write Eq.(17) as

_QM
�
n3

= [�3 (TM; xs) + TMSF (TM; xs)]�Hc: (19)

Now we would like to write the cooling power in the general form of the �rst law of thermody-
namics using enthalpies

_QM =
�
n3 (H3 �Hc) : (20)

This can be done if we introduce

H3 (T; x) = �3 (T; x) + TSF (T; x) : (21)

This important quantity is called the osmotic enthalpy. In 3He-4He mixtures it plays the same
role as the enthalpy in pure �uids.
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Fig.7 gives important properties of mixtures at low 3He concentrations and temperatures
below about 150 mK. The solid lines, labeled isotone, are lines of constant osmotic pressure
�; the dotted lines, labeled isenthalp, are lines of constant osmotic enthalpy H3, and the line,
labeled xs, gives the saturation concentration of the dilute phase xs. Note that the vertical axes
in Fig.7 is T 2 as these quantities tend to vary with T 2:

Figure 7: T 2 � x diagram giving the lines of constant osmotic pressure � (solid lines, values in
Pa); lines of constant osmotic enthalpy H3 (dotted lines values in J/mol); and the saturation
concentration of the dilute phase xs. The scale on the right gives the temperature in K.

We distinguish four important special cases:

1. The concentration is constant and equal to the saturated concentration at absolute zero
(vertical line in Fig.7)

x0 = 0:066: (22)

In that case the osmotic enthalpy can be approximated by the relation

H3x (T; x0) = 84T
2: (23)

In this relation, and in some of the following relations, the enthalpy is expressed in J/mol
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and the temperature in kelvin.1

2. The concentration is equal to the saturated concentration (follow line xs in Fig.7). If T
increases x increases as well. In that case

H3s (T; xs (T )) = 96T
2: (24)

3. The concentration x follows a line of constant osmotic pressure (follow isotone of about
2200 Pa in Fig.7). If T increases x decreases so that the the osmotic pressure remains
constant. In that case

H3os (T; xos (T )) = 54T
2: (25)

4. If (locally) the critical velocity is exceeded, mutual friction sets in and H3 is constant.

The relation for the molar enthalpy of pure 3He as a function of temperature is

Hc = 12T
2: (26)

It should be noted that the numbers in the expressions (23)-(26) are only approximate.
In terms of the osmotic enthalpy Eq.(20) can be written as

_QM =
�
n3 [H3 (TM; xs)�Hc (Ti)] : (27)

Now it is no longer necessary to limit the expression to reversible mixing. The temperature Ti
is the temperature of the 3He, entering the mixing chamber in the concentrated phase. With
Eqs.(24) and (26) Eq.(27) gives

_QM =
�
n3
�
96T 2M � 12T 2i

�
: (28)

If _Qm = 0. Using Eqs.(28) gives the famous relation

TM =
1p
8
Ti �

Ti
2:8

(29)

which states that there is a �xed ratio between the mixing chamber temperature and the tem-
perature of the incoming 3He. This property shows the importance of the precooling of the
incoming 3He.

4 Limiting temperature of dilution refrigerators

Consider the exit tube of the mixing chamber. We assume that this is a cylindrical tube with
diameter D and that the �ow is laminar. The energy conservation relation for this tube is

1

2
Cd

�
n3
dT 2

dl
� �d
T 2

128

�D4
V 23d

�
n
2

3 �
�

4
D2

d

dl

�
�d
T

dT

dl

�
= 0: (30)

1The numerical values given here are approximate. If higher accuracy is needed exact numbers should be
derived from thermodynamic tables.
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The �rst term represents the enthalpy �ow with the parameter Cd derived from the osmotic
enthalpy (Eq.(25), Cd = 2� 54). The second term gives the so-called viscous heating with the
viscosity given by

� =
�d
T 2
: (31)

The third term is the heat conduction with the thermal conductivity given by

� =
�d
T
: (32)

Eq.(30) is a quite complicated di¤erential relation which can only be solved numerically.
However, there are some important tricks that can be used to derive essential elements of the
relation without having to solve the relation numerically. These "tricks"are:

4.1 Trick 1

Introduce a dimensionless length � as follows

l = l0� (33)

and temperature �
T = T0� : (34)

For the time being l0 and T0 have no meaning other than that we know that they have the
dimension of length and temperature respectively. Substitution of (33) and (34) in Eq.(30) gives

T 20
2l0
Cd

�
n3
d�2

d�
� �d
T 20 �

2

128

�D4
V 23d

�
n
2

3 �
�d
l20

�

4
D2

d

d�

�
1

�

d�

d�

�
= 0: (35)

We clean up this expression a little bit by dividing it by the prefactor of the �rst term so that
we get

d�2

d�
� 256 �d

Cd

V 23d
�D4

�
n3
l0
T 40

1

�2
� 2�d

Cd
�
n3

�

4
D2

1

T 20 l0

d

d�

�
1

�

d�

d�

�
= 0: (36)

4.2 Trick 2

Chose l0 and T0 in such a way that the prefactors of the two other terms become equal to one.
So put

256
�d
Cd

V 23d
�D4

�
n3
l0
T 40

= 1 (37)

and
2�d

Cd
�
n3

�

4
D2

1

T 20 l0
= 1: (38)

This leaves a di¤erential equation

d�2

d�
� 1

�2
� d

d�

�
1

�

d�

d�

�
= 0: (39)
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4.3 Results

Eliminating l0 from Eqs.(37) and (38) gives a relation for the characteristic temperature

T0 =

�
(128�d�d)

1=2 V3d
Cd

�1=3 1

D1=3
: (40)

Note that the characteristic temperature is independent of the �ow rate. For a certain temper-
ature we can determine the characteristic diameter

D0 = (128�d�d)
1=2 V3d

Cd

1

T 30
: (41)

Substitution of Eq.(40) in (37) gives a relation for the characteristic length

l0 = 64�
�d�

2
dV

2
3d

C3d

1
�
n3T 80

: (42)

With the numerical values

Cd = 108
J

mol K2
(43)

and

V3d = 426� 10�6
m3

mol
(44)

and
�d = 5� 10�8 PasK2 (45)

and

�d = 3� 10�4
W
m

(46)

in Eq.(40) we get in engineering terms

T0
mK

= 5:57
�mm
D

�1=3
(47)

and with Eqs.(41) and (42)
D0
mm

=

�
5:57

mK
T0

�3
(48)

and
l0
m
= 130

mmol/s
�
n3

�
mK
T0

�8
: (49)

It can be shown that the lowest temperature that can be reached with dilution refrigerators is

Tlim = 0:7T0: (50)

Combining Eqs.(50) and (47) it becomes clear that lower temperatures can be reached with
wider tubes. However, this is only true if the length of the tube is also longer than l0. For
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D = 1 mm the characteristic temperature is 5.57 mK. For T0 = 2 mK we get D0 = 21 mm and
with

�
n3 = 1 mmol/s l0 = 507 mm. This tube (approximately 2 cm diameter and half a meter

long) is quite big but manageable. If we lower the temperature with a factor 2 the characteristic
diameter increases with a factor 23=8, and the length with 28=256, and the volume with a factor
16,384. There is no fundamental limit for the lowest temperature of dilution refrigerators: the
bigger the machine the lower the temperature will be. However, below about 2 mK, there is the
alternative of nuclear refrigeration, which turns out to be a more practical solution than just
making huge dilution refrigerators.
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