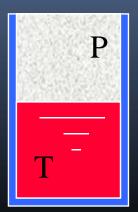


Cryogenic Fluids

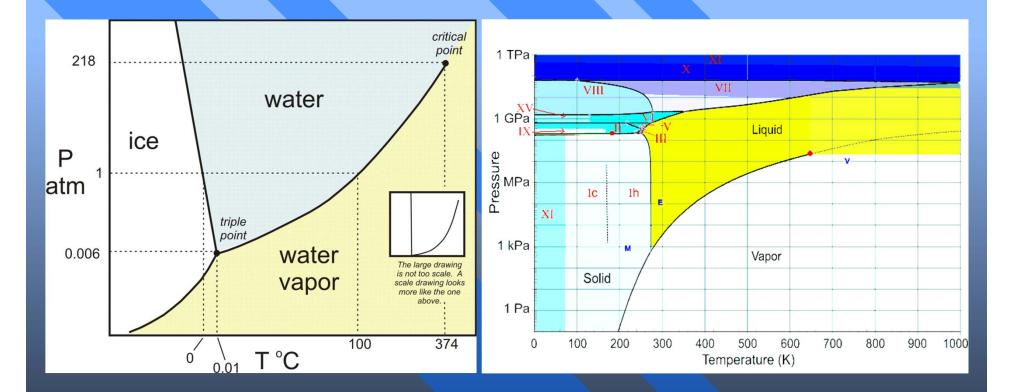
European Advanced Cryogenics School

Henri Godfrin


European Advanced Cryogenics School – Chichilianne 2011

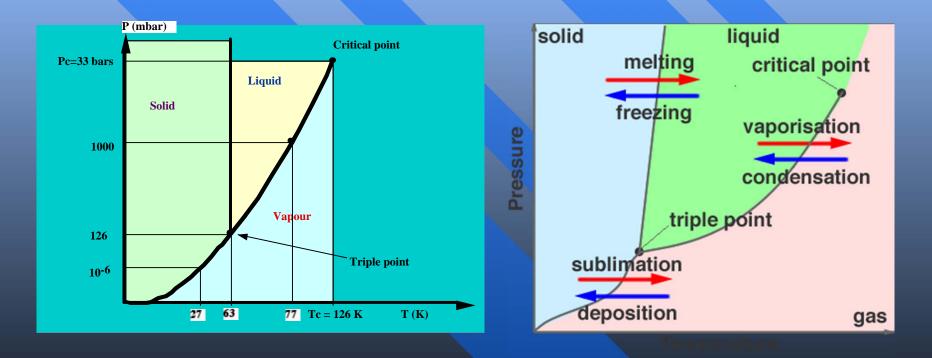
Fluids : basic concepts

3 states of matter: solid / liquid / gas


- \rightarrow Influence of temperature and pressure
 - Example: water
 - At (constant) atmospheric pressure:
 - At constant temperature (20 C) :
- if T ≥ : Solidification
 if T
 if P ≥ : Evaporation
- if P **7** : Solidification

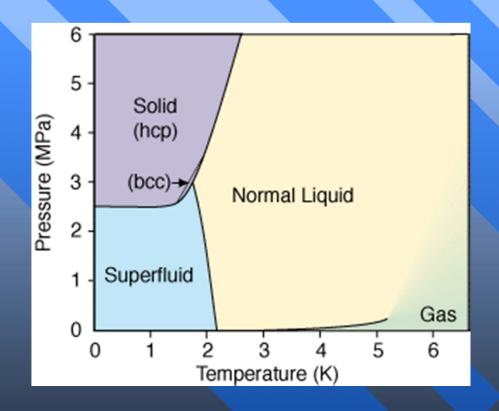
Liquid state : saturated vapour pressure

- Liquid boiling at temperature T : in equilibrium with the gas at pressure P. It is a dynamical equilibrium (exchange of atoms)
- A well defined pressure corresponds to each temperature :
 → saturated vapour pressure


Phase diagram of Water

Triple point: solid-liquid-gas coexistence (thermometry!)

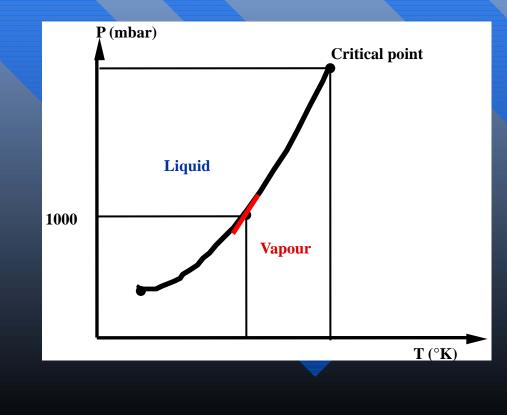
- Solids have a saturated vapour pressure too!
- Critical point \rightarrow vapour and fluid phases are indistinguishable


Cryogenic fluids (nitrogen, hydrogen, helium, etc...) Nitrogen

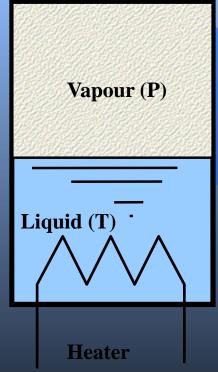
• The dependence P = f(T) is a characteristic of the fluid.

■ It is tabulated and can be used for thermometer calibration.

One exception : helium



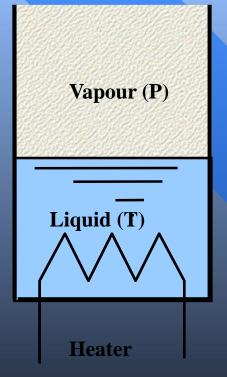
No solidification at low Pressure !


■ solid → increase P at low temperatures (T<1K; P>25bar)

Boiling cryogenic fluids

A cryogenic fluid at atmospheric pressure is always boiling
And therefore, on the P(T) curve

1st transformation


Heating in a closed vessel

P et T will increase following the curve till the critical point.
For each value of P , one value of T

Not recommended!

 Except in special cases, one <u>never</u> closes the output of a cryogenic reservoir (vent)

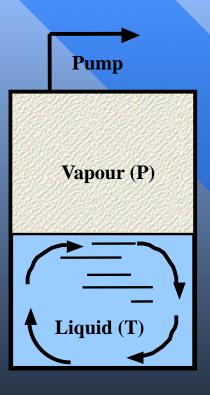
2^d transformation

Heating an open vesselAt atmospheric pressure, for instance

T = Constant (77K for Nitrogen)

The helium level drops, with production of vapour.

3^d transformation


Closed vessel, with external supply of gas under pressure
 (bottle or compressor)

 T increases in principle following the P(T) curve

- In practice, the equilibrium P(T) is not reached instantaneously = stratification within the liquid.
 - Poor thermal conduction
 - Hotter in the upper part

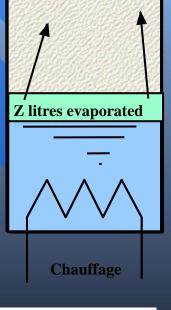
4th transformation

Closed vessel under depression (vacuum pump)

T diminishes following P(T)

At each value of P corresponds a value of T till the triple point.

In this case : better equilibrium
 Cold on the top : convection flow


Latent heat of vaporisation

→An important property related to vaporisation
 L_{vap} : Amount of heat needed in order to evaporate a given amount of liquid

- *Heating* : *expressed* in watts
- Energy supplied = Watts x sec. = Joules

L_{vap} characterises the volatility

- Expressed in : joules / gram
 - or joules / litre
 - More practically : in litres of liquid evaporated per hour for 1 Watt.
- → Liquid Nitrogen
 - I watt evaporates <u>0,022 litre / hour</u>
- \rightarrow Liquid Helium : more « volatile »
 - 1 watt evaporates **<u>1,4 litre / hour</u>**
- For the same applied power, helium evaporates at a rate $1400/22 = \underline{70}$ times faster than Nitrogen.

time × *power* Z = L_{vap}

Ideal Gases

T >> Liquefaction temperature Standard Volume = 1 Mole • $V = 22,4 \ litres \ (22400 \ cm^3)$ • $T = 0^{\circ}C (273, 15 \text{ K})$ • $P = 1 Bar (10^5 Pa)$ For all gases \rightarrow same number of molecules • Na = $6,02 \cdot 10^{23}$ (Avogadro's number) The masses depend on the gas considered • M = molar masse (in grams) • *He* : *I* atom / molecule M = 4 g• H_2 : 2 atoms / molecule M = 2 g• N_2 : 2 atoms / molecule $M = 28 \, g$ The density at a given T and P is given by

$$\rho = \frac{M_{(grams)}}{22400} \times \frac{P_{(Pascal)}}{10^5} \times \frac{273,15}{T_{(Kelvin)}} \quad (in \ g/cm^3)$$

Properties of Cryogenic Fluids

263 K

Boiling temperatures at atmospheric pressure

Butane :

	-	Propane :	230 K
	-	Freon :	de 140 à
	_	CO ₂ :	195 K
	_	Xenon :	165 K
	_	Krypton :	121 K
	-	Methane :	111 K
	-	Argon :	87 K
nent gases » □	-	Oxygen :	90 K
	_	CO:	82 K
	_	Fluor :	85 K
	-	Nitrogen :	77,3 K
	_	Neon :	27,2 K
	_	Deuterium :	23,6 K
	_	Hydrogen :	20,3 K
		Helium 4 :	4,21 K
	_	Helium 3 :	3,2 K

0à	240 K
Κ	
Κ	
Κ	
ζ	
	Interest of liquefying gases :
	storage and transportation
	$(O_2, N_2, He, H_2, Ar, CH_4,)$

European Advanced Cryogenics School

« perman

Properties of Cryogenic Fluids

 1 litre of evaporated liquid gives ca. 1000 litres of gas at room temperature and atmospheric pressure, i.e. 1 m³ (more precisely; from 700 to 800 litres).

Example : the gas contained in a bottle (O_2 , N_2 , He) (50 litres at 150 bars) \rightarrow 7,5 m³ NPT

• This corresponds to about 10 litres of liquid

10 litres of liquid ~ Ø30 cm / h = 40 cm weight : a few kg Bottle 50 L Ø 25 cm / h = 1,50 m weight : ~ 60 kg

Liquid Nitrogen

Nitrogen in air : 80 %

- 1st liquefaction in 1877 (Cailletet)
- Boiling T at atmospheric pressure : 77,4 K
- Range of temperatures accessible by varying the pressure :

• from 62 K / 128 mbar to 126 K / 33 bars

- Density : slightly less than water :
 - 800 g/litre at 77 K

Heat of evaporation :

• 1 watt evaporates 22,6 cm³/hour liquid ($L_{vap} = 199 \text{ j/g}$)

Liquid Nitrogen

- Thermal conductivity : similar to that of an insulator
 - Comparable to Teflon at 300 K, 1000 times less than Copper
 - k = 1,38 mW/cm.K

Viscosity : small

- $\eta = 1500$ micropoises
- 7 times less than water
- Correspondence liquid / gas :
 - 1 L liquid \rightarrow 700 L gas NTP

• Other applications :

- Food cooling and conservation
- Inert : microelectronics, metallurgy, cleaning, ...
- Car industry

Liquid Oxygen

Oxygen in air : 20 %

- Boiling T at atmospheric pressure : 90,2 K
- Range of temperatures accessible by varying the pressure :
 - From 54,4 K / 1,2 mbar to 154 K / 50 bars
- Density : somewhat larger than water :
 - 1140 g/litre at 90 K
- Heat of evaporation :
 - 1 watt evaporates 15 cm³/hour liquid

Liquid Oxygen

Seldom used in Cryogenics (only calibrations)
Danger : avoid contact with oil, grease
Correspondence liquid / gas :

1 L liquid → 800 L gas NPT

Other applications :

- Steel, cutting, combustion (furnaces)
- Medical, space, ...

Liquid Hydrogen

- The lightest gas (balloons)
- Danger = flammable
- Boiling T at atmospheric pressure : 20,2 K (Dewar 1898)
- Range of temperatures accessible by varying the pressure :
 - from 13,8 K / 70 mbar to 33 K / 12,7 bars
- Density : the lightest liquid : (rockets)
 - 70 g/litre at 20 K
- Heat of evaporation : $L_{vap} = 445 \text{ J/g}$
 - 1 watt evaporates 115 cm³/hour liquid (5 times more than nitrogen)

Liquid Hydrogen

- Thermal conductivity : similar to that of an insulator • like LN2 \rightarrow k = 1,18 mW/cm/K Viscosity : 70 times smaller than water $\rightarrow \eta = 140$ micropoises Correspondence liquid / gas : • 1 L liquid \rightarrow 780 L gas NPT Other applications : • Rocket fuel (Ariane 4 and 5)
 - Industry of micro components (inert atmosphere), chemistry, ...

Liquid Hydrogen

Para

2 isotopes : Deuterium and Tritium
 In H₂ : 2 spin orientations are possible

Ortho

In equilibrium :

- $300 \text{ K} \rightarrow 75\%$ of ortho and 25% of para
- 20 K \rightarrow 0,2% of ortho and 99,8% of para
- **\square** Transformation ortho \rightarrow para exothermal and slow
 - Catalyser to accelerate the transformation
 - Releases 450 J/g
 - Liquefaction without catalyser = large % of ortho → large evaporation in the storage dewar.

Liquid Neon

- Noble gas: 10 times more expensive than Helium
- Boiling T at atmospheric pressure : 27 K
- Range of temperatures accessible by varying the pressure :
 - from 24,5 K / 425 mbar

to 44,5 K / 27,8 bars

- Density :
 - 1210 g/litre at 27 K
- Heat of evaporation :
 - 1 watt evaporates 35 cm³/hour liquid

Thermal conductivity : similar to that of an insulator

Viscosity : small, 8 times less than water

Correspondence liquid / gas :

- 1 L liquid \rightarrow 1350 L gas NTP
- Other applications :

• Light tubes

Liquid Argon

- Boiling T at atmospheric pressure : 87,3 K
 Range of temperatures accessible by varying the pressure :
 - from 83,8 K / 690 mbar

to 150,9 K / 50 bars

Density :

- 1400 g/litre at 87 K
- Gas NPT = 1,78 g/litre \rightarrow heavier than air !

Heat of evaporation :

• 1 watt evaporates 16 cm³/hour liquid

Liquid Argon

Thermal conductivity : similar to that of an insulator
 Like nitrogen

Viscosity : rather low, 4 times less than water

Correspondence liquid / gas :

- 1 L liquid → 784 L gas NTP
- Other applications :
 - Inert atmosphere, welding
 - Industry of micro components (inert atmosphere)

Physical constants for the GAS state

	Molar Mass	Density NTD	Viscosity	Thermal	Heat appacity of
		Densiy NTP	Viscosity		Heat capacity of
	Μ	ρ	η	Conductivity	gaz
	(grams)	(g/cm^3)	(micropoises)	k	Ср
		-	-	(mW/cm.K)	(j/g.K)
Nitrogen (N ₂)	28	1,25 . 10 ⁻³	69 to 100 K	0,09 to 100 K	1,04 from 100 K
1 (110gen (112)			180 to 300 K	0,26 to 300 K	to 300 K
Oxygen (O ₂)	32	1,43 . 10 ⁻³			
Hydrogen (H ₂)	2	9,0 . 10-5	10 to 20 K 90 to 300 K	0,15 to 20 K 1,8 to 300 K	10,4 to 20 K 10,8 to 80 K 14,5 to 300 K
Helium 4 (⁴ He)	4	$1,78.10^{-4}$	14 to 5 K 85 to 80 K 200 to 300 K	0,1 to 4,2 K 1,5 to 300 K	5,2

2 stable isotopes :

⁴He = abundant ³He = rare and expensive

<u>Helium 4 (⁴He):</u>

Discovered in :

■ 1868 = astronomical observation (chromosphere)

Helium

- 1895 =on earth (in air: 1/250 000) (Ramsay)
- 1905 = in natural gas, in the USA
- The hardest gas to liquefy!
 (1908 in Leyden, Kamerlingh Onnes)

Helium 4 gas

World consumption = $35 \text{ millions of } m^3$ / year Rare gas - Price ~ 8 Euros /m³ NTP In natural gas wells : 0,1 à 0,5 % USA, Poland, Russia, Algeria Other applications : Balloons, diving Inert atmosphere, welding Pressurisation (rockets), spatial and nuclear engineering Leak detection

Boiling T at atmospheric pressure : 4,2 K Range of temperatures accessible by varying the pressure : • from 1 K / 0,1 mbar 5,2 K / 2,26 bars to Density : • 125 g/litre at 4,2 K Heat of evaporation : • $L_{vap} = 20.9 \text{ J/g} \rightarrow \text{very low}$ • 1 watt evaporates 1400 cm³/hour liquid (65 times more than nitrogen) Correspondence liquid / gas : • 1 L liquid \rightarrow 750 L gas NTPtriple)

Liquid ⁴He

Helium 3

Available since the 60's : produced by nuclear reaction

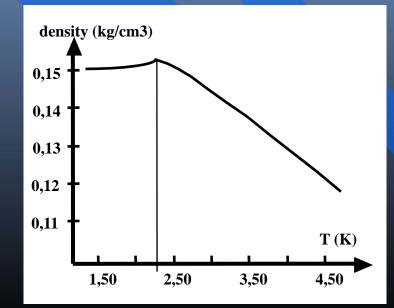
• ⁶Li + n → ⁴He + Tritium

Tritium \rightarrow ³He + β

- Half-life of Tritium = 12 years
- Strategic (military industries)
- Very expensive : Price ~ 3000 Euros (2011) /litre of gas NTP !

Applications :

- Low temperatures < 1 K
 - ³He liquid at 10^{-3} mbar \rightarrow T = 0,3 K
 - Mixtures ³He/⁴He : a few mK
- Medical imaging (polarised gas)
- Neutron detectors

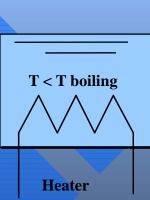


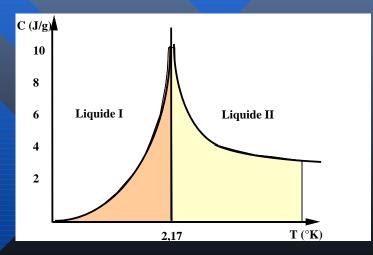
Boiling T at atmospheric pressure : 3,2 K Range of temperatures accessible by varying the pressure : • from 0,3 K / 10⁻³ mbar 3,33 K / 1,16 bars to Density : 59 g/litre at 300 K Heat of evaporation : • 1 watt evaporates ~ 3 litres/hour liquid (2 times more than ⁴He) Correspondence liquid / gas : • 1 L liquid \rightarrow 460 L gas NTP

⁴He = a special liquid

Properties are not "classical"
Quantum mechanics
Seen already in early studies :

Discontinuity of physical constants at T = 2,17 K


⁴He : Heat capacity (C)


C is the amount of heat needed to increase the temperature by 1 °K for a given amount of matter.

- \neq heat of evaporation
- Units : J/g.K or cal/g.K

For helium :

- At 4,2 K : like water
 - C = 4,18 J / g / °K
- Cooling : discontinuity at 2,17 K
 - C : 7 and then \checkmark
- Lambda Point
 - 2,17 K
 - Pressure : 50 mbar
 - 2 phases (helium I and II)

Liquid ⁴He : Heat capacity (C)

C_{hélium.} is very large
 → from 4 to 8 J/g.K

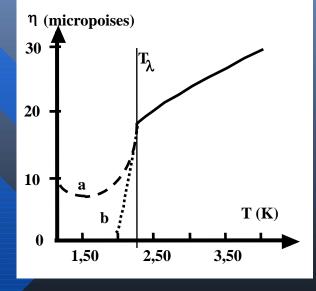
As a comparison : Copper at 4,2 K : C_{copper} = 10⁻⁴ J/g.K C_{helium.} / C_{copper} = 40 000 ! Copper at 300 K : C_{copper} = 0,4 J/g.K C_{hélium} / C_{copper} = 10 !

Large thermal inertia of helium with respect to metals

• Also true for other cryogenic fluids

⁴He : Viscosity (η)

Viscosity (η)


Above de T_{λ} : liquid I

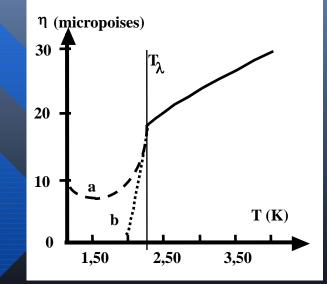
• Small viscosity

- 60 times less than N_2 et 400 times less than H_2O
- About 30 micropoises

Below T_{λ} : liquid II (T < 2,17 K)

- Superfluid Helium : superflow
- Unusual properties

⁴He : Viscosity (n)


Below T_{λ} , η depends on the kind of measurement

a) damping of disk oscillations in the liquid
 Viscosity remains above 5 micropoises

■ b) Flow in narrow slits (10⁻³ à 10⁻⁴ mm) (Kapitza)

- Large flow even with small ΔP
- Difficult to measure
- Flow independent on P
- η lower than 10⁻³ micropoises

→ <u>SUPERFLUID</u> Liquid

Explanation = 2 fluids (TISZA)

• Helium II \rightarrow mixture of normal ρ_n and superfluid ρ_s component.

⁴He : Viscosity (η)

- Superfluid:
 - Entropy = 0
 - Viscosity = 0
- Only the normal component carries entropy.
- Oscillating Disc
 - Measures viscosity of normal fluid
- **Slits**
 - Measures η of superfluid component

$$\rho = \rho_n + \rho_s$$

$$\frac{\rho_n}{\rho} = 1$$
 at T_{λ}

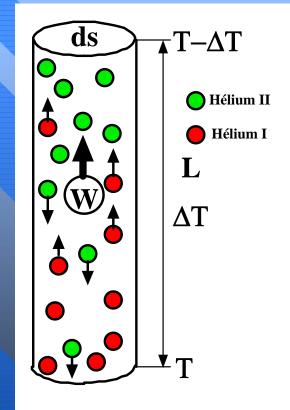
$$\frac{\rho_s}{\rho} = 1 \quad at \quad 0 \quad K$$

He: Thermal conductivity (k)

Liquid helium I

Liquid ⁴He - I is an insulator (better than Teflon)

- k = 4 times smaller than LN2
- k = 0,27 mW/cm.K

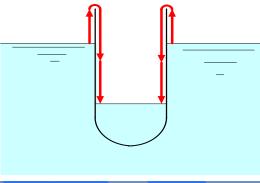

Liquid helium II (superfluid)

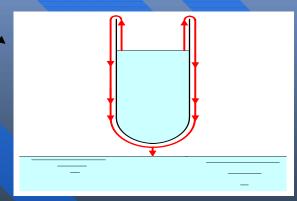
- k becomes very large (8000 W/cm.K at 1,9K !!)
- *About 1000 times better than copper*
- By far the best thermal conductor near T_{λ}
- Consequence : in a superfluid helium bath
 - No gradient between top and bottom of Dewar (no stratification).
 - No bubbles (associated to ΔT)
- Large conductivity and heat capacity : application for magnets.

⁴He : Thermal conductivity (k)

2-fluids model

- Gradient of temperature ?Displacement of x superfluid atoms
 - From cold to hot parts
 - Larger concentration in cold places
- No accumulation
 - → *displacement in opposite direction of the normal atoms*
 - Entropy transport
- Heat is transported by dynamical flow
 - \neq transfer of energy
 - Large apparent conductivity
- Limits :
 - If heat flux is large
 - Interactions in the normal fluid
 - Flux max. ~ W/cm^2 for $\Delta T \sim a$ few 0, I K

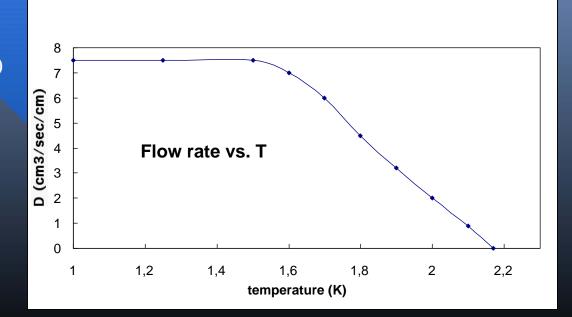

 $W = k \frac{ds}{dt} \Delta T$


⁴He : superfluid film

2 experiments

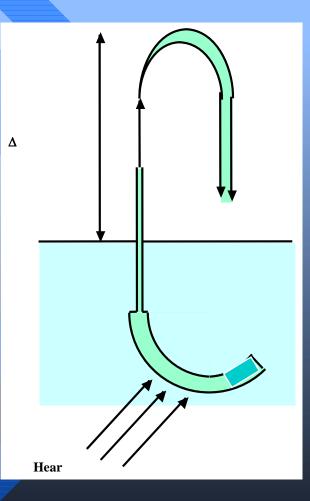
- Figure 1 : reservoir fills
- Figure 2 : reservoir empties
- → In both cases a film has formed giving rise to a flow of liquid
 - → ROLLIN FILM
- Properties of the film
 - Flows from cold to hot places
 - Evaporates at the hot point (T_{λ})
 - Consequences :
 - Climbs along the cryostat's neck
 - Climbs along pumping lines
 - Heat leaks and reduced performance of refrigerators

• Need of film-burners or diaphragms at $T \sim 1 K$

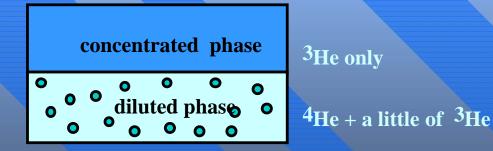

⁴He : superfluid film

Flow rate

- Proportionnal to the smallest perimeter seen
- Thin film = 30 nm
- Displacement velocity
 - 25 cm/sec (~ 1 km/h)


 $\frac{Flow \ rate}{Perimeter} = 25 \times 30.10^{-9} = 7,5.10^{-5} \quad cm^3 / sec.cm$ i.e. $\frac{Flow \ rate}{P\acute{e}rim\acute{e}tre} = 0,27 \quad cm^3 / hour \ !!$

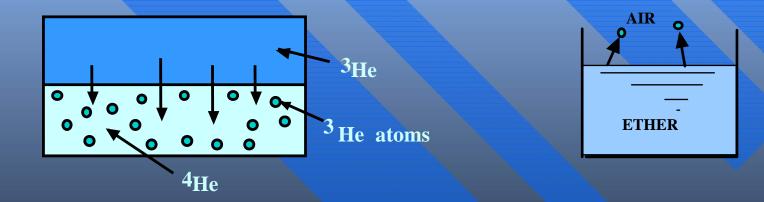
- For bad surfaces (metals)
 → *10 times !
- Independent on the level difference


⁴He : fountain effect

- Fine powder = superleak (alumina)
- Only superfluid component flows
- Liquid helium fountain can reach one meter!
- **Explanation :**
 - Heat input
 - Superfluid \rightarrow normal conversion
 - Flow of superfluid towards the hot point (osmotic pressure)
 - Normal Fluid « pushed » towards the top of the capillary → fountain effect
- Direct conversion of thermal energy in kinetic energy

Mixtures ³He/⁴He

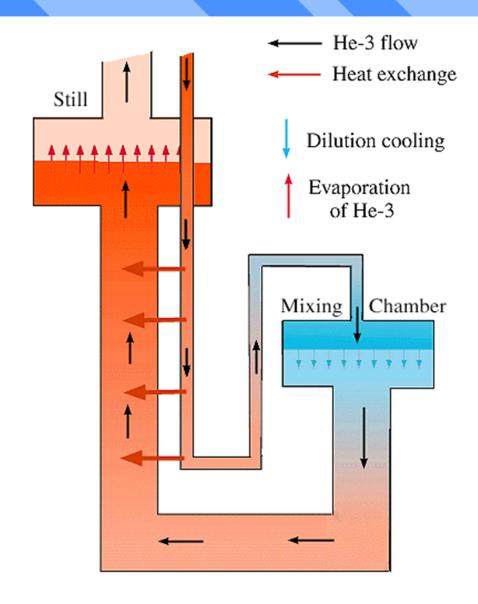
At T > 0,8 K : the liquids are miscible (like water and alcohol)
At T < 0,8 K : separation in 2 phases (like water and oil)



- In the lower phase : ³He diluted in ⁴He = diluted phase
 - The concentration of ³He depends on temperature
 - 0,5 K \rightarrow ~ 20 % ³He
 - T ~ 0 K → ~ 6,4 % 3 He
 - Even at low temperatures, there is a finite solubility of ³He in ⁴He
- In the upper phase : concentrated ³He (no ⁴He)
- ⁴He is superfluid in the diluted phase

Mixtures ⁴He/³He : dilution

■ Equivalent to the evaporation of a liquid in the presence of another gas : ether in air → cooling


But upside-down!

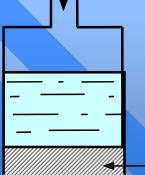
Continuous refrigeration

- \rightarrow circulation of ³He from concentrated to diluted phases
- With a careful design, refrigeration down to mK temperatures
 (2 to 4 mK in the best dilution refrigerators)

Schematic view of a dilution refrigerator

⁴He = a special liquid

Very dense vapour


- Liquid at 4,2 K → 125 g/litre
- ► Vapour at $4,2K \rightarrow 17$ g/litre \rightarrow factor 7,5 (180 for Nitrogen)
- Consequence on the amount of matter in an empty devwar at 4,2 K : 100 litres of vapour at 4,2 K = 10 m³ of gas NTP
- Large enthalpy of the vapour
 - Heating vapour from 4 K to 300 K
 - → recovering frigories!.
 - Example : 1 kg of copper from 300 to 4,2 K
 - <u>Without recovering the gas enthalpy</u> : <u>30 litres</u> of helium
 - recovering the gas enthalpy : only 0,4 litres needed
 - Precooling with Liquid Nitrogen, this is not so critical :
 0,5 litres without / 0,2 litres with gas enthalpy recovery.

Amount evaporated for cooling:

Without using the gas enthalpy **To cool down 1 kg of copper starting at 300 K** \rightarrow <u>30 litres</u> of liquid helium Pre-cooling with liquid Nitrogen From 77 to 4,2 K \rightarrow <u>2,5 litres</u> of liquid He Using the gas enthalpy **Ex** : transferring from below ■ To cool down 1 kg of copper from 300 to 4,2 \rightarrow <u>0,5 litres</u> of liquid He maximum use of gas enthalpy! Between these two approaches = litres / kg

- Important that transfer is slow and from below
- LN2 pre-cooling is important

European Advanced Cryogenics School

Metal (copper...)

Vapour

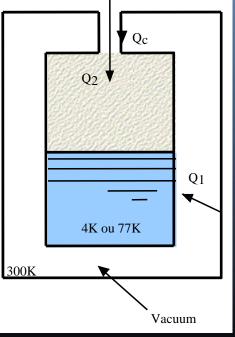
He

Metal (copper...)

Storage of cryogenic fluids

Usually called "cryostats" or « Dewar »

Heat reaches the fluid by different ways: :

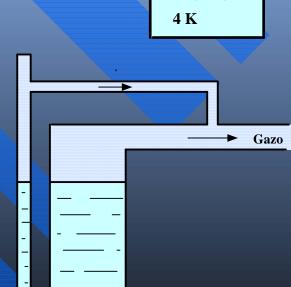

- conduction by the neck Qc
- radiation Q1 + Q2
- These sources of heating can be calculated, expressed in watts, and thus the evaporated amount (losses) :

• Losses in litres / hour $= N_{watt} \times 1,4$ for helium $= N_{watt} \times 0,022$ for Nitrogen

Typical losses :

- 1 storage 100 litres helium :
- 1 helium laboratory cryostat :
- 1 LN2 cryostat :

: 0,030 watt
 → i.e. 1 litre / day
 at: 0,1 to 1 watt
 → i.e. ~ 10 litres / day
 ~ a few 10 watt
 → i.e. 5 litres / day



TACONIS EFFECT

- **Thermo-acoustic oscillations**.
 - tube closed at the top immersed in liquid helium.
- Self-maintained phenomenon
- Evaporation ~ 0,1 l/h to more than 10 l/h !!

Solution :

- Avoid this geometry
- Or, if unavoidable :
 - Foresee a connection to recovery
 - Anti-oscillantion damp volume (100 litres)
 - Diaphragms

300 K

